Problem Formulation GP Learning of Unknown LTV GP based MPC Numerical Simulation Conclusion ## Gaussian Process based Model Predictive Control for Linear Time Varying Systems IEEE 14th International Workshop on Advanced Motion Control Gang Cao School of Engineering and Advanced Technology Massey University, Auckland April 23, 2016 Problem Formulation GP Learning o Unknown LTV GP based MPC Numerical Simulation Conclusion ## Outline **Problem Formulation** GP Learning of Unknown LTV GP based MPC **Numerical Simulation** Conclusion Problem Formulation Unknown LTV GP based MP Numerical Simulation Conclusion #### Abbreviations ► GP: Gaussian process ▶ MPC: Model predictive control ▶ LTV: Linear time varying ▶ CG: Conjugate gradient Problem Formulation GP Learning GP based MPC Numerical Simulation Conclusion #### Problem Formulation Linear time-varying system: $$\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{B}_k \mathbf{u}_k + \mathbf{w}_k \tag{1}$$ - $\mathbf{x}_k \in \mathbb{R}^n, \, \mathbf{u}_k \in \mathbb{R}^m, \, \mathbf{w}_k \in \mathbb{R}^n;$ - ▶ State matrix \mathbf{A}_k and Input matrix \mathbf{B}_k are unknown; Unconstrained MPC trajectory tracking problem: $$\min \mathbf{V}_{k}^{*} = \min_{\mathbf{U}_{k}^{*}} \sum_{i=1}^{H} \left\{ \|\mathbf{x}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} \right\} (2)$$ $\mathbf{U}_{k}^{*} = [\mathbf{u}_{k-1}^{*}, \cdots, \mathbf{u}_{k+H-1}^{*}]^{T};$ #### Problem Formulation GP Learning of Unknown LTV CD based MD(Numerical Simulation Conclusion #### Problem Formulation ## **Problems:** - ▶ Identification of unknown LTV system - ▶ Solving the MPC problem effectively #### Problem Formulation GP Learning of Unknown LTV GP based MP0 Numerical Simulation Conclusio #### **Problem Formulation** #### Problems: - ▶ Identification of unknown LTV system - ▶ Solving the MPC problem effectively #### Contributions: - ▶ GP based MPC; - Gradient based solution; Problem Formulation GP Learning of Unknown LTV GP based MP Numerical Simulation Conclusion ## GP Learning of Unknown LTV ## Gaussian Process Models: Problem Formulation GP Learning of Unknown LTV GP based MP Numerical Simulation Conclusion ## GP Learning of Unknown LTV ## Gaussian Process Models: ► Probabilistic data-driven model; Problem Formulation GP Learning of Unknown LTV GP based MP Numerical Simulation Conclusion ## GP Learning of Unknown LTV #### Gaussian Process Models: - ► Probabilistic data-driven model; - Specifying a squared exponential covariance function $\mathbf{K}(\mathbf{x}_{k,i},\mathbf{x}_{k,j},\boldsymbol{\theta});$ $\mathbf{K}(\tilde{\mathbf{x}}_{i},\tilde{\mathbf{x}}_{i}) = \sigma_{s}^{2} \exp(-\frac{1}{2}(\tilde{\mathbf{x}}_{i} \tilde{\mathbf{x}}_{i})^{T} \boldsymbol{\Lambda}(\tilde{\mathbf{x}}_{i} \tilde{\mathbf{x}}_{i})) + \sigma_{n}^{2}$ Problem Formulation GP Learning of Unknown LTV GP based MPC Numerical Simulation Conclusio ## GP Learning of Unknown LTV #### Gaussian Process Models: - Probabilistic data-driven model; - ▶ Specifying a squared exponential covariance function $\mathbf{K}(\mathbf{x}_{k,i}, \mathbf{x}_{k,i}, \boldsymbol{\theta})$; - $\mathbf{x}_k^* \sim \mathcal{N}\{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\};$ $$\boldsymbol{\mu}_k = \mathbf{K}(\tilde{\mathbf{x}}_k^*, \tilde{\mathbf{X}})(\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}}) + \sigma_n \mathbf{I})^{-1} \mathbf{X}_k$$ (3a) $$\Sigma_k = \mathbf{K}(\tilde{\mathbf{x}}_k^*, \tilde{\mathbf{x}}_k^*) \tag{3b}$$ $$-\mathbf{K}(\tilde{\mathbf{x}}_k^*, \tilde{\mathbf{X}})(\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}}) + \sigma_n \mathbf{I})^{-1}\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{x}}_k^*)$$ Problem Formulation GP Learning of Unknown LTV GP based MPC Numerical Simulation Conclusion ## GP Learning of Unknown LTV #### Gaussian Process Models: - ► Probabilistic data-driven model; - ▶ Specifying a squared exponential covariance function $\mathbf{K}(\mathbf{x}_{k,i}, \mathbf{x}_{k,j}, \boldsymbol{\theta})$; - $ightharpoonup \mathbf{x}_k^* \sim \mathcal{N}\{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\};$ $$\mu_{k} = \mathbf{K}(\tilde{\mathbf{x}}_{k}^{*}, \tilde{\mathbf{X}})(\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}}) + \sigma_{n}\mathbf{I})^{-1}\mathbf{X}_{k}$$ (3a) $$\Sigma_{k} = \mathbf{K}(\tilde{\mathbf{x}}_{k}^{*}, \tilde{\mathbf{x}}_{k}^{*})$$ (3b) $$-\mathbf{K}(\tilde{\mathbf{x}}_{k}^{*}, \tilde{\mathbf{X}})(\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}}) + \sigma_{n}\mathbf{I})^{-1}\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{x}}_{k}^{*})$$ ▶ Evaluation of model uncertainty $\rightarrow \Sigma_k$; Problem Formulation GP Learning of Unknown LTV GP based MPC Numerical Simulation Conclusion ## GP Learning of Unknown LTV #### Gaussian Process Models: - Probabilistic data-driven model; - Specifying a squared exponential covariance function $\mathbf{K}(\mathbf{x}_{k,i}, \mathbf{x}_{k,i}, \boldsymbol{\theta})$; - $ightharpoonup \mathbf{x}_k^* \sim \mathcal{N}\{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\};$ $$\mu_{k} = \mathbf{K}(\tilde{\mathbf{x}}_{k}^{*}, \tilde{\mathbf{X}})(\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}}) + \sigma_{n}\mathbf{I})^{-1}\mathbf{X}_{k}$$ (3a) $$\boldsymbol{\Sigma}_{k} = \mathbf{K}(\tilde{\mathbf{x}}_{k}^{*}, \tilde{\mathbf{x}}_{k}^{*})$$ (3b) $$-\mathbf{K}(\tilde{\mathbf{x}}_{k}^{*}, \tilde{\mathbf{X}})(\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}}) + \sigma_{n}\mathbf{I})^{-1}\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{x}}_{k}^{*})$$ ▶ Evaluation of model uncertainty $\rightarrow \Sigma_k$; ## Unknown LTV Learning: - ▶ GP Inputs: $\tilde{\mathbf{x}}_k = (\mathbf{x}_k, \mathbf{u}_k)$; - ▶ GP Outputs: $\delta \mathbf{x}_{k+1} = \mathbf{x}_{k+1} \mathbf{x}_k$; - ► Hyperparameters learning: Minimize the negative log of likelihood (CG); Problem Formulation GP Learning o Unknown LTV GP based MPC Numerical Conclusion #### GP based MPC #### **Problem Reformulation:** $$\mathbb{E}\left[\mathbf{V}_{k}^{*}\right] = \mathbb{E}\left[\sum_{i=1}^{H} \left\{ \|\mathbf{x}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} \right\} \right]$$ $$= \sum_{i=1}^{H} \left\{ \|\boldsymbol{\mu}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} + \operatorname{trace}\left(\mathbf{Q}\boldsymbol{\Sigma}_{k+i}\right) \right\}$$ $$(4)$$ Deterministic MPC Problem Formulation GP Learning of Unknown LTV GP based MPC Numerical Simulation Conclusion #### GP based MPC #### Problem Reformulation: $$\mathbb{E}\left[\mathbf{V}_{k}^{*}\right] = \mathbb{E}\left[\sum_{i=1}^{H} \left\{ \|\mathbf{x}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} \right\} \right]$$ Stochastic MPC $$= \sum_{i=1}^{H} \left\{ \|\boldsymbol{\mu}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} + \operatorname{trace}\left(\mathbf{Q}\boldsymbol{\Sigma}_{k+i}\right) \right\}$$ Deterministic MPC #### Implementation Issues: ▶ Uncertainty propagation → GP predictions at uncertain inputs; Problem Formulation GP Learning of GP based MPC Numerical Simulation Conclusion #### GP based MPC #### Problem Reformulation: $$\mathbb{E}\left[\mathbf{V}_{k}^{*}\right] = \mathbb{E}\left[\sum_{i=1}^{H} \left\{ \|\mathbf{x}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} \right\} \right]$$ Stochastic MPC $$= \sum_{i=1}^{H} \left\{ \|\boldsymbol{\mu}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} + \operatorname{trace}\left(\mathbf{Q}\boldsymbol{\Sigma}_{k+i}\right) \right\}$$ Deterministic MPC #### Implementation Issues: - ▶ Uncertainty propagation → GP predictions at uncertain inputs; - ▶ Effective Solutions → Gradient based optimization; Problem Formulation GP Learning of GP based MPC Numerical Simulation Conclusion ## Gradient based optimization ## Unconstrained optimization question: $$\mathbf{U}_{k}^{*} = \arg\min_{\mathbf{U}_{k}^{*}} \mathbb{E}\left\{\mathbf{V}_{k}^{*}\right\}$$ (5a) s.t. $$\boldsymbol{\mu}_{k+1} = \mathcal{G}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \mathbf{u}_k);$$ (5b) Problem Formulation GP Learning of Unknown LTV GP based MPC Numerical Simulation Conclusion ## Gradient based optimization ## Unconstrained optimization question: $$\mathbf{U}_{k}^{*} = \arg\min_{\mathbf{U}_{k}^{*}} \mathbb{E}\left\{\mathbf{V}_{k}^{*}\right\}$$ (5a) s.t. $$\boldsymbol{\mu}_{k+1} = \mathcal{G}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \mathbf{u}_k);$$ (5b) Gradient based linear search; $$\mathbf{U}_{k+1} = \mathbf{U}_k + \boldsymbol{\alpha} \cdot \underbrace{\frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k}}_{\text{Gradient}}; \tag{6}$$ $$\frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k} = \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \boldsymbol{\mu}_{k+1}} \frac{\partial \boldsymbol{\mu}_{k+1}}{\partial \mathbf{U}_k} + \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \boldsymbol{\Sigma}_{k+1}} \frac{\partial \boldsymbol{\Sigma}_{k+1}}{\partial \mathbf{U}_k} + \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k} \quad (7)$$ Problem Formulation GP Learning of Unknown LTV GP based MPC Numerical Simulation Conclusion ## Gradient based optimization ## Unconstrained optimization question: $$\mathbf{U}_{k}^{*} = \arg\min_{\mathbf{U}_{k}^{*}} \mathbb{E}\left\{\mathbf{V}_{k}^{*}\right\}$$ (5a) s.t. $$\boldsymbol{\mu}_{k+1} = \mathcal{G}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \mathbf{u}_k);$$ (5b) Gradient based linear search; $$\mathbf{U}_{k+1} = \mathbf{U}_k + \boldsymbol{\alpha} \cdot \underbrace{\frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k}}_{\text{Gradient}}; \tag{6}$$ $$\frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k} = \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \boldsymbol{\mu}_{k+1}} \frac{\partial \boldsymbol{\mu}_{k+1}}{\partial \mathbf{U}_k} + \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \boldsymbol{\Sigma}_{k+1}} \frac{\partial \boldsymbol{\Sigma}_{k+1}}{\partial \mathbf{U}_k} + \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k} \quad (7)$$ ▶ End when $\mathbb{E}\{\mathbf{V}_k\}_{\mathbf{U}_k} \leq \epsilon$; Problem Formulation GP Learning of Unknown LTV GP based MPC Numerical Simulation Conclusion ## Gradient based optimization ## Unconstrained optimization question: $$\mathbf{U}_{k}^{*} = \arg\min_{\mathbf{U}_{k}^{*}} \mathbb{E}\left\{\mathbf{V}_{k}^{*}\right\}$$ (5a) s.t. $$\boldsymbol{\mu}_{k+1} = \mathcal{G}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \mathbf{u}_k);$$ (5b) Gradient based linear search; $$\mathbf{U}_{k+1} = \mathbf{U}_k + \boldsymbol{\alpha} \cdot \underbrace{\frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k}}_{\text{Gradient}}; \tag{6}$$ $$\frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k} = \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \boldsymbol{\mu}_{k+1}} \frac{\partial \boldsymbol{\mu}_{k+1}}{\partial \mathbf{U}_k} + \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \boldsymbol{\Sigma}_{k+1}} \frac{\partial \boldsymbol{\Sigma}_{k+1}}{\partial \mathbf{U}_k} + \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k} \quad (7)$$ - ▶ End when $\mathbb{E}\{\mathbf{V}_k\}_{\mathbf{U}_k} \leq \epsilon$; - ► Multi-Start with different initial values; Problem Formulation GP Learning of Unknown LTV GP based MPC Numerical Simulation Conclusio #### Numerical Simulation ## 2-Inputs-2-Outputs Numerical Example: $$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} a(t) & 1 \\ b(t) & 0 \end{bmatrix} \mathbf{u} + \mathbf{w}$$ (8) - $a(t) = 1 + \sin(2\pi t/1500)$ and $b(t) = \cos(2\pi t/1500)$; - $\mathbf{w} \sim \mathcal{N}(0, 0.01);$ - ▶ 2 trajectories: "Duffing" and "Lorenz"; - ▶ 50 repeats; - ▶ Observations generated by using a linear MPC; - ► Compare to the Nelder-Mead method (derivative-free); Problem GP Learning of GP based MPC Numerical Simulation Conclusion ## **Numerical Simulation** ## Modelling Results: | | Training MSE | | |-----------|-------------------------|-------------------------| | "Duffing" | 2.2338×10^{-4} | 3.4091×10^{-4} | | "Lorenz" | 8.7979×10^{-5} | 4.0674×10^{-4} | Problem Formulation GP Learning o Unknown LTV GP based MPC Numerical Simulation Conclusion ## **Numerical Simulation** Problem Formulation GP Learning GP based MPC Numerical Simulation Conclusio #### **Numerical Simulation** ## **Control Results:** | | Approximately Required Time(s) | | |-----------|--------------------------------|-------| | | Grad-GPMPC | GPMPC | | "Duffing" | 30 | 70 | | "Lorenz" | 16 | 37 | (j) "Lorfenz" Trajectory Problem Formulatio GP Learning o Unknown LTV CD based MD Numerical Simulation Conclusio ## **Numerical Simulation** Problem Formulatio Unknown LTV GP based MP Numerica. Simulation Conclusion #### Conclusion ## **Conclusions:** - Proposed GP based MPC performs well in tracking problems; - Gradient based solution works faster; Problem Formulation Unknown LTV GP based MPC Numerical Simulation Conclusion #### Conclusion #### **Conclusions:** - Proposed GP based MPC performs well in tracking problems; - ► Gradient based solution works faster; ### **Future Works:** - ► Constrained MPC for Nonlinear unknown systems; - Guaranteed stability and robustness against uncertainties; Problem Formulatior GP Learning of Unknown LTV GP based MP0 Numerical Simulation Conclusion ## Thanks! Problem Formulatior GP Learning of GP based MP Numerical Simulation Conclusion # Questions?