

Problem Formulation

GP Learning of Unknown LTV

GP based MPC

Numerical Simulation

Conclusion

Gaussian Process based Model Predictive Control for Linear Time Varying Systems

IEEE 14th International Workshop on Advanced Motion Control

Gang Cao

School of Engineering and Advanced Technology Massey University, Auckland

April 23, 2016

Problem Formulation

GP Learning o Unknown LTV

GP based MPC

Numerical Simulation

Conclusion

Outline

Problem Formulation

GP Learning of Unknown LTV

GP based MPC

Numerical Simulation

Conclusion

Problem Formulation

Unknown LTV

GP based MP

Numerical Simulation

Conclusion

Abbreviations

► GP: Gaussian process

▶ MPC: Model predictive control

▶ LTV: Linear time varying

▶ CG: Conjugate gradient

Problem Formulation

GP Learning

GP based MPC

Numerical Simulation

Conclusion

Problem Formulation

Linear time-varying system:

$$\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{B}_k \mathbf{u}_k + \mathbf{w}_k \tag{1}$$

- $\mathbf{x}_k \in \mathbb{R}^n, \, \mathbf{u}_k \in \mathbb{R}^m, \, \mathbf{w}_k \in \mathbb{R}^n;$
- ▶ State matrix \mathbf{A}_k and Input matrix \mathbf{B}_k are unknown;

Unconstrained MPC trajectory tracking problem:

$$\min \mathbf{V}_{k}^{*} = \min_{\mathbf{U}_{k}^{*}} \sum_{i=1}^{H} \left\{ \|\mathbf{x}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} \right\} (2)$$

 $\mathbf{U}_{k}^{*} = [\mathbf{u}_{k-1}^{*}, \cdots, \mathbf{u}_{k+H-1}^{*}]^{T};$

Problem Formulation

GP Learning of Unknown LTV

CD based MD(

Numerical Simulation

Conclusion

Problem Formulation

Problems:

- ▶ Identification of unknown LTV system
- ▶ Solving the MPC problem effectively

Problem Formulation

GP Learning of Unknown LTV

GP based MP0

Numerical Simulation

Conclusio

Problem Formulation

Problems:

- ▶ Identification of unknown LTV system
- ▶ Solving the MPC problem effectively

Contributions:

- ▶ GP based MPC;
- Gradient based solution;

Problem Formulation

GP Learning of Unknown LTV

GP based MP

Numerical Simulation

Conclusion

GP Learning of Unknown LTV

Gaussian Process Models:

Problem Formulation

GP Learning of Unknown LTV

GP based MP

Numerical Simulation

Conclusion

GP Learning of Unknown LTV

Gaussian Process Models:

► Probabilistic data-driven model;

Problem Formulation

GP Learning of Unknown LTV

GP based MP

Numerical Simulation

Conclusion

GP Learning of Unknown LTV

Gaussian Process Models:

- ► Probabilistic data-driven model;
- Specifying a squared exponential covariance function $\mathbf{K}(\mathbf{x}_{k,i},\mathbf{x}_{k,j},\boldsymbol{\theta});$ $\mathbf{K}(\tilde{\mathbf{x}}_{i},\tilde{\mathbf{x}}_{i}) = \sigma_{s}^{2} \exp(-\frac{1}{2}(\tilde{\mathbf{x}}_{i} \tilde{\mathbf{x}}_{i})^{T} \boldsymbol{\Lambda}(\tilde{\mathbf{x}}_{i} \tilde{\mathbf{x}}_{i})) + \sigma_{n}^{2}$

Problem Formulation

GP Learning of Unknown LTV

GP based MPC

Numerical Simulation

Conclusio

GP Learning of Unknown LTV

Gaussian Process Models:

- Probabilistic data-driven model;
- ▶ Specifying a squared exponential covariance function $\mathbf{K}(\mathbf{x}_{k,i}, \mathbf{x}_{k,i}, \boldsymbol{\theta})$;
- $\mathbf{x}_k^* \sim \mathcal{N}\{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\};$

$$\boldsymbol{\mu}_k = \mathbf{K}(\tilde{\mathbf{x}}_k^*, \tilde{\mathbf{X}})(\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}}) + \sigma_n \mathbf{I})^{-1} \mathbf{X}_k$$
 (3a)

$$\Sigma_k = \mathbf{K}(\tilde{\mathbf{x}}_k^*, \tilde{\mathbf{x}}_k^*) \tag{3b}$$

$$-\mathbf{K}(\tilde{\mathbf{x}}_k^*, \tilde{\mathbf{X}})(\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}}) + \sigma_n \mathbf{I})^{-1}\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{x}}_k^*)$$

Problem Formulation

GP Learning of Unknown LTV

GP based MPC

Numerical Simulation

Conclusion

GP Learning of Unknown LTV

Gaussian Process Models:

- ► Probabilistic data-driven model;
- ▶ Specifying a squared exponential covariance function $\mathbf{K}(\mathbf{x}_{k,i}, \mathbf{x}_{k,j}, \boldsymbol{\theta})$;
- $ightharpoonup \mathbf{x}_k^* \sim \mathcal{N}\{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\};$

$$\mu_{k} = \mathbf{K}(\tilde{\mathbf{x}}_{k}^{*}, \tilde{\mathbf{X}})(\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}}) + \sigma_{n}\mathbf{I})^{-1}\mathbf{X}_{k}$$
(3a)
$$\Sigma_{k} = \mathbf{K}(\tilde{\mathbf{x}}_{k}^{*}, \tilde{\mathbf{x}}_{k}^{*})$$
(3b)
$$-\mathbf{K}(\tilde{\mathbf{x}}_{k}^{*}, \tilde{\mathbf{X}})(\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}}) + \sigma_{n}\mathbf{I})^{-1}\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{x}}_{k}^{*})$$

▶ Evaluation of model uncertainty $\rightarrow \Sigma_k$;

Problem Formulation

GP Learning of Unknown LTV

GP based MPC

Numerical Simulation

Conclusion

GP Learning of Unknown LTV

Gaussian Process Models:

- Probabilistic data-driven model;
- Specifying a squared exponential covariance function $\mathbf{K}(\mathbf{x}_{k,i}, \mathbf{x}_{k,i}, \boldsymbol{\theta})$;
- $ightharpoonup \mathbf{x}_k^* \sim \mathcal{N}\{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\};$

$$\mu_{k} = \mathbf{K}(\tilde{\mathbf{x}}_{k}^{*}, \tilde{\mathbf{X}})(\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}}) + \sigma_{n}\mathbf{I})^{-1}\mathbf{X}_{k}$$
(3a)
$$\boldsymbol{\Sigma}_{k} = \mathbf{K}(\tilde{\mathbf{x}}_{k}^{*}, \tilde{\mathbf{x}}_{k}^{*})$$
(3b)
$$-\mathbf{K}(\tilde{\mathbf{x}}_{k}^{*}, \tilde{\mathbf{X}})(\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}}) + \sigma_{n}\mathbf{I})^{-1}\mathbf{K}(\tilde{\mathbf{X}}, \tilde{\mathbf{x}}_{k}^{*})$$

▶ Evaluation of model uncertainty $\rightarrow \Sigma_k$;

Unknown LTV Learning:

- ▶ GP Inputs: $\tilde{\mathbf{x}}_k = (\mathbf{x}_k, \mathbf{u}_k)$;
- ▶ GP Outputs: $\delta \mathbf{x}_{k+1} = \mathbf{x}_{k+1} \mathbf{x}_k$;
- ► Hyperparameters learning: Minimize the negative log of likelihood (CG);

Problem Formulation

GP Learning o Unknown LTV

GP based MPC

Numerical

Conclusion

GP based MPC

Problem Reformulation:

$$\mathbb{E}\left[\mathbf{V}_{k}^{*}\right] = \mathbb{E}\left[\sum_{i=1}^{H} \left\{ \|\mathbf{x}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} \right\} \right]$$

$$= \sum_{i=1}^{H} \left\{ \|\boldsymbol{\mu}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} + \operatorname{trace}\left(\mathbf{Q}\boldsymbol{\Sigma}_{k+i}\right) \right\}$$

$$(4)$$

Deterministic MPC

Problem Formulation

GP Learning of Unknown LTV

GP based MPC

Numerical Simulation

Conclusion

GP based MPC

Problem Reformulation:

$$\mathbb{E}\left[\mathbf{V}_{k}^{*}\right] = \mathbb{E}\left[\sum_{i=1}^{H} \left\{ \|\mathbf{x}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} \right\} \right]$$
Stochastic MPC
$$= \sum_{i=1}^{H} \left\{ \|\boldsymbol{\mu}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} + \operatorname{trace}\left(\mathbf{Q}\boldsymbol{\Sigma}_{k+i}\right) \right\}$$
Deterministic MPC

Implementation Issues:

▶ Uncertainty propagation → GP predictions at uncertain inputs;

Problem Formulation

GP Learning of

GP based MPC

Numerical Simulation

Conclusion

GP based MPC

Problem Reformulation:

$$\mathbb{E}\left[\mathbf{V}_{k}^{*}\right] = \mathbb{E}\left[\sum_{i=1}^{H} \left\{ \|\mathbf{x}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} \right\} \right]$$
Stochastic MPC
$$= \sum_{i=1}^{H} \left\{ \|\boldsymbol{\mu}_{k+i} - \mathbf{r}_{k+i}\|_{\mathbf{Q}}^{2} + \|\mathbf{u}_{k+i-1}\|_{\mathbf{R}}^{2} + \operatorname{trace}\left(\mathbf{Q}\boldsymbol{\Sigma}_{k+i}\right) \right\}$$
Deterministic MPC

Implementation Issues:

- ▶ Uncertainty propagation → GP predictions at uncertain inputs;
- ▶ Effective Solutions → Gradient based optimization;

Problem Formulation

GP Learning of

GP based MPC

Numerical Simulation

Conclusion

Gradient based optimization

Unconstrained optimization question:

$$\mathbf{U}_{k}^{*} = \arg\min_{\mathbf{U}_{k}^{*}} \mathbb{E}\left\{\mathbf{V}_{k}^{*}\right\}$$
 (5a)

s.t.
$$\boldsymbol{\mu}_{k+1} = \mathcal{G}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \mathbf{u}_k);$$
 (5b)

Problem Formulation

GP Learning of Unknown LTV

GP based MPC

Numerical Simulation

Conclusion

Gradient based optimization

Unconstrained optimization question:

$$\mathbf{U}_{k}^{*} = \arg\min_{\mathbf{U}_{k}^{*}} \mathbb{E}\left\{\mathbf{V}_{k}^{*}\right\}$$
 (5a)

s.t.
$$\boldsymbol{\mu}_{k+1} = \mathcal{G}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \mathbf{u}_k);$$
 (5b)

Gradient based linear search;

$$\mathbf{U}_{k+1} = \mathbf{U}_k + \boldsymbol{\alpha} \cdot \underbrace{\frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k}}_{\text{Gradient}}; \tag{6}$$

$$\frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k} = \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \boldsymbol{\mu}_{k+1}} \frac{\partial \boldsymbol{\mu}_{k+1}}{\partial \mathbf{U}_k} + \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \boldsymbol{\Sigma}_{k+1}} \frac{\partial \boldsymbol{\Sigma}_{k+1}}{\partial \mathbf{U}_k} + \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k} \quad (7)$$

Problem Formulation

GP Learning of Unknown LTV

GP based MPC

Numerical Simulation

Conclusion

Gradient based optimization

Unconstrained optimization question:

$$\mathbf{U}_{k}^{*} = \arg\min_{\mathbf{U}_{k}^{*}} \mathbb{E}\left\{\mathbf{V}_{k}^{*}\right\}$$
 (5a)

s.t.
$$\boldsymbol{\mu}_{k+1} = \mathcal{G}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \mathbf{u}_k);$$
 (5b)

Gradient based linear search;

$$\mathbf{U}_{k+1} = \mathbf{U}_k + \boldsymbol{\alpha} \cdot \underbrace{\frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k}}_{\text{Gradient}}; \tag{6}$$

$$\frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k} = \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \boldsymbol{\mu}_{k+1}} \frac{\partial \boldsymbol{\mu}_{k+1}}{\partial \mathbf{U}_k} + \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \boldsymbol{\Sigma}_{k+1}} \frac{\partial \boldsymbol{\Sigma}_{k+1}}{\partial \mathbf{U}_k} + \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k} \quad (7)$$

▶ End when $\mathbb{E}\{\mathbf{V}_k\}_{\mathbf{U}_k} \leq \epsilon$;

Problem Formulation

GP Learning of Unknown LTV

GP based MPC

Numerical Simulation

Conclusion

Gradient based optimization

Unconstrained optimization question:

$$\mathbf{U}_{k}^{*} = \arg\min_{\mathbf{U}_{k}^{*}} \mathbb{E}\left\{\mathbf{V}_{k}^{*}\right\}$$
 (5a)

s.t.
$$\boldsymbol{\mu}_{k+1} = \mathcal{G}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \mathbf{u}_k);$$
 (5b)

Gradient based linear search;

$$\mathbf{U}_{k+1} = \mathbf{U}_k + \boldsymbol{\alpha} \cdot \underbrace{\frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k}}_{\text{Gradient}}; \tag{6}$$

$$\frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k} = \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \boldsymbol{\mu}_{k+1}} \frac{\partial \boldsymbol{\mu}_{k+1}}{\partial \mathbf{U}_k} + \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \boldsymbol{\Sigma}_{k+1}} \frac{\partial \boldsymbol{\Sigma}_{k+1}}{\partial \mathbf{U}_k} + \frac{\partial \mathbb{E}\{\mathbf{V}_k\}}{\partial \mathbf{U}_k} \quad (7)$$

- ▶ End when $\mathbb{E}\{\mathbf{V}_k\}_{\mathbf{U}_k} \leq \epsilon$;
- ► Multi-Start with different initial values;

Problem Formulation

GP Learning of Unknown LTV

GP based MPC

Numerical Simulation

Conclusio

Numerical Simulation

2-Inputs-2-Outputs Numerical Example:

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} a(t) & 1 \\ b(t) & 0 \end{bmatrix} \mathbf{u} + \mathbf{w}$$
 (8)

- $a(t) = 1 + \sin(2\pi t/1500)$ and $b(t) = \cos(2\pi t/1500)$;
- $\mathbf{w} \sim \mathcal{N}(0, 0.01);$
- ▶ 2 trajectories: "Duffing" and "Lorenz";
- ▶ 50 repeats;
- ▶ Observations generated by using a linear MPC;
- ► Compare to the Nelder-Mead method (derivative-free);

Problem

GP Learning of

GP based MPC

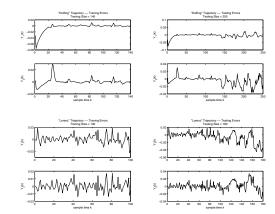
Numerical Simulation

Conclusion

Numerical Simulation

Modelling Results:

	Training MSE	
"Duffing"	2.2338×10^{-4}	3.4091×10^{-4}
"Lorenz"	8.7979×10^{-5}	4.0674×10^{-4}



Problem Formulation

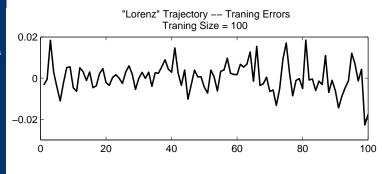
GP Learning o Unknown LTV

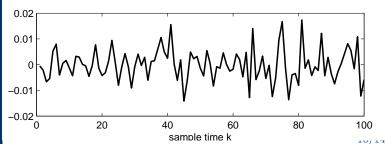
GP based MPC

Numerical Simulation

Conclusion

Numerical Simulation





Problem Formulation

GP Learning

GP based MPC

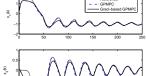
Numerical Simulation

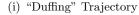
Conclusio

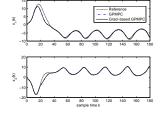
Numerical Simulation

Control Results:

	Approximately Required Time(s)	
	Grad-GPMPC	GPMPC
"Duffing"	30	70
"Lorenz"	16	37







(j) "Lorfenz" Trajectory

Problem Formulatio

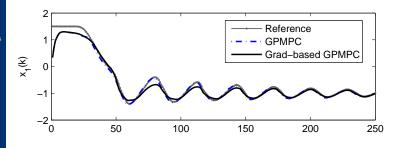
GP Learning o Unknown LTV

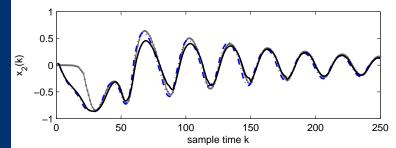
CD based MD

Numerical Simulation

Conclusio

Numerical Simulation





Problem Formulatio

Unknown LTV

GP based MP

Numerica. Simulation

Conclusion

Conclusion

Conclusions:

- Proposed GP based MPC performs well in tracking problems;
- Gradient based solution works faster;

Problem Formulation

Unknown LTV

GP based MPC

Numerical Simulation

Conclusion

Conclusion

Conclusions:

- Proposed GP based MPC performs well in tracking problems;
- ► Gradient based solution works faster;

Future Works:

- ► Constrained MPC for Nonlinear unknown systems;
- Guaranteed stability and robustness against uncertainties;

Problem Formulatior

GP Learning of Unknown LTV

GP based MP0

Numerical Simulation

Conclusion

Thanks!

Problem Formulatior

GP Learning of

GP based MP

Numerical Simulation

Conclusion

Questions?