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Abstract Two issues of quadrotor control without deter-
ministic dynamical equations are addressed in this paper by
using Gaussian Process (GP) based Model Predictive Control
(MPC) algorithm. Firstly, the first issue of modelling unknown
dynamical motions is solved by using GP models based on
sampled data. In this way, the model uncertainty can be
numerically evaluated during modelling and prediction pro-
cess. This is not easy when using other data-driven methods,
such as Artificial Neural Networks (ANN) and Fuzzy Models
(FMs). Then a MPC scheme based on obtained GP models is
proposed to address the second issue of designing appropriate
quadrotor controllers. The proposed algorithm directly takes
model uncertainty into account when planning MPC policies,
and can be computationally efficiently implemented through
using analytical gradients in the optimization process. The
performance of quadrotor control using proposed approach is
demonstrated by simulations on a trajectory tracking problem.

I. INTRODUCTION

Recent interests in quadrotors, which are unmanned aerial
vehicles with vertical take-off and landing abilities, are high.
This is mainly due to their maneuverability, simplicity and
payload capabilities [1]–[3]. They have been proposed for use
in various military and civilian tasks [4]–[6].

The dynamics of the quadrotor are highly nonlinear and
the control problem of the quadrotor is not trivial. Several
control methods have previously been proposed, including
sliding model control [7], backstepping control [8] and Model
Predictive Control (MPC) [1, 9]. A review of quadrotor control
can be found in [9, 10]. MPC has the advantage of conceptual
simplicity, and input and output constraints can easily be
incorporated.

MPC [11, 12] is a class of computer control algorithms
that predict future responses of a plant based on its system
model. Control actions are obtained by repeatedly solving a
finite horizon optimal control problem. The system model of
the quadrotor can be obtained using Newton-Euler [13] or
Euler-Lagrange based formalisms [14, 15]. The translational
and rotational motions are usually modelled by separately and
controlled by two separate controllers [3, 10, 16, 17]. The
main drawback of this approach is the difficulty in accounting
for unmodelled dynamics and unknown perturbations.

An alternative approach is to use data-driven modelling
techniques. Observations or data collected from a quadrotor

operating in a real environment can be used to create a model
of the dynamics and perturbations through machine learning.
In [18], the quadrotor dynamics are modelled by Artificial
Neural Networks (ANN) while Fuzzy Models (FMs) are used
in [19, 20]. One major issue with these approaches is the
difficulty in assessing the quality of the models learnt from
data. In [21], a Bayesian based technique is incorporated
into ANN to address this issue but it is computationally
demanding. Another approach is to use direct Bayesian mod-
elling techniques, such as Gaussian Process (GP) models. GP
models have the advantage that variances are computed during
the modelling process. These numerical variance values can
be used to provide an indication of the quality of models
created. Recently, it has been applied to learn partial quadrotor
dynamics [22]. Another learning based MPC method can be
found in [23].

The main issue with data-driven learning based modelling is
that it is generally impossible to account for the full dynamics
from the training data alone. Therefore, the main challenge
is how to account for model uncertainties. Conventionally,
uncertainties are assumed to be bounded, and control actions
are computed by using the “min-max” method [24]. However,
MPC controllers obtained in this way are usually too conser-
vative since the design is based on worst-case perturbations.
Furthermore, uncertainty bounds are not easy to determine
in practice. In [25], a Stochastic Model Predictive Control
(SMPC) scheme is presented where model uncertainties are
represented by probabilistic “hard-constraints”. Unfortunately,
this method is computationally demanding. In [26], the use of
“soft-constraints” to incorporate model uncertainty into policy
planning and evaluation in a straightforward manner has been
proposed to address the issue.

In this paper, we consider MPC control of a quadrotor
with the full translational and rotational dynamics modelled
by using GP. Initially, the quadrotor dynamics are assumed
to be totally unknown and a GP model of the dynamics is
learnt purely from observations. The advantage of using GP
models is that model uncertainties are explicitly expressed by
numerically computed variances, and can be propagated over
the prediction horizon. We propose a method, called GPMPC
to directly take GP model variances into account when de-
signing the controller. In addition, by making use of gradients
derived analytically from the GP models, a computationally
efficient way is presented to solve the optimization problem.

The rest of this paper is organized as follows. Section II
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Fig. 1: Quadrotor Body-Earth Frame

briefly introduces Euler-Lagrange based dynamical equations
of a quadrotor. The way to learn the GP models of the
quadrotor subsystems is presented in Section III. In Section IV,
a hierarchical control scheme using GP MPC algorithm is
proposed for the trajectory tracking problem. Analytical gra-
dients are derived and they are used in a computationally
efficient algorithm to solve the control optimization problem.
The effectiveness and efficiency of the proposed algorithm are
evaluated through simulation and the results are presented in
Section V. Finally, Section VI concludes the paper.

II. DYNAMICAL MODELS OF QUADROTORS

The dynamical equations of a quadrotor can be obtained by
using the Euler-Lagrange formalism from the energy perspec-
tive. As shown in Figure (1), two reference frames are defined
– the earth-fixed frame (E-frame) and the body-fixed frame(B-
frame). Let ξE [m] = [x, y, z]T and ηE [rad] = [ϕ, θ, ψ]T be
the position and angular vectors of the quadrotor in the E-
frame and B-frame respectively, where ϕ, θ and ψ are corre-
sponding Euler angles. In addition, let I = diag([Ixx, Iyy, Izz])
be the inertia matrix 1, where Ixx, Iyy and Izz represent the
inertial moments w.r.t the corresponding axis.

The Lagrangian of quadrotor dynamics is given by

L(q, q̇) = ET + ER − EP (1)

where q = [ξE ;ηE ] is the generalized coordinate. Here, ET
and ER denote the translational and rotational kinetic energies,
and EP is the total potential energy. Then, the Euler-Lagrange
equation is [10, 14]:[

F
Γ

]
=

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

(2)

where F is the translational force to the quadrotor, and Γ =
[τϕ, τθ, τψ]

T represent the moments in the roll, pitch and yaw
directions.

1It is assumed that the quadrotor in this paper is symmetrical w.r.t. all three
coordinates (or principal) axes.

Since the Lagrangian does not contain the combined kinetic
energy term q̇ [10], (2) can be further separated into transla-
tional and rotational motion equations, given by

F = mξ̈ +mgez (3)

where m is mass of the quadrotor and g is gravitational
acceleration, ez = [0, 0, 1]T is a unit vector in the E-frame,
and

Γ = J η̈E + Cη̇E (4)

where J and C are the Jacobian and Coriolis matrices [10].
By further rewriting (3) in state-space form, the translational

subsystem can be expressed as

ẋξ = f (xξ,uξ) + ϵξ

=



ẋ
ux

U1

m + Ax

m
ẏ

uy
U1

m +
Ay

m
ż

−g + (cosϕ cos θ)U1

m + Az

m

+ ϵξ,
(5)

with intermediate controls

ux = cosϕ sin θ cosψ + sinϕ sinψ

uy = cosϕ sin θ sinψ − sinϕ cosψ
(6)

where xξ = [x, ẋ, y, ẏ, z, ż]T and uξ = [U1, ux, uy]
T are the

state and input vectors, and ϵξ denotes an external disturbance
vector. In addition, Ax, Ay and Az are aerodynamic forces that
are independently applied to x, y and z axis in the E-frame.

Similarly, we can obtain the state-space representation of
the rotational subsystem as follows.

ẋη = g (xη,uη) + ϵη

=



ϕ̇

θ̇ψ̇
(
Iyy−Izz
Ixx

)
+ JR

Ixx
θ̇ΩR + L

Ixx
U2

θ̇

ϕ̇ψ̇
(
Izz−Ixx

Iyy

)
− JR

Iyy
ϕ̇ΩR + L

Iyy
U3

ψ̇

θ̇ϕ̇
(
Ixx−Iyy

Izz

)
+ L

Izz
U4


+ ϵη,

(7)

where xη = [ϕ, ϕ̇, θ, θ̇, ψ, ψ̇]T and uη = [U2, U3, U4]
T denote

the state and control vectors, and ϵη represent the rotational
external disturbance vector. In addition, L is arm length of the
quadrotor. JR denotes the inertial moment of rotors, and ΩR
represents the overall residual angular speed of propellers.

III. QUADROTOR DYNAMICS LEARNING

For both the translational and rotational systems, the state
equation take the form:

xk+1 = f (xk,uk, k) +wk (8)

where k is the integer index of time, f(·) is an unknown
nonlinear function, and w ∈ Rn represents Gaussian noise
with zero mean and variance Σw. For the translational system,
the states and controls are x = xξ and u = uξ respectively.
Similarly, x = xη and u = uη for the rotational motions. The



system described by (8) can be modelled by GP models where
the state-control tuples x̃k = (xk,uk) ∈ Rn+m and state
differences δxk = xk+1−xk ∈ Rn are used as training inputs
and targets respectively [27, 28]. Using state differences can
be advantageous when changes in δx are less than changes in
x. The n separate GP models are trained for each independent
target.

A GP model is completely specified by a mean and a
covariance function [29]. If the mean µ is zero and the
squared exponential covariance, defined as K(x̃i, x̃j) =
σ2
s exp(−1

2 (x̃i − x̃j)
TΛ(x̃i − x̃j)) + σ2

n, is used, then σ2
s , σ

2
n

and matrix Λ are the hyperparameters of the GP model. Given
D training inputs X̃ = [x̃1, · · · , x̃D] and the corresponding
training targets y = [δx1, · · · , δxD]T , the joint distribution
between training targets and test target δx∗ at a given training
input x̃∗ follows the Gaussian distribution. That is,

p

(
y
δx∗

)
∼ N

(
0,

K(X̃, X̃) + σnI K(X̃, x̃∗)

K(x̃∗, X̃) K(x̃∗, x̃∗)

)
(9)

Furthermore, through restricting the joint distribution to only
contain those targets that agree with collected observations,
we can obtain the posterior distribution that also is a Gaussian
with following mean and variance function.

Ef [δxk] = K(x̃∗, X̃)(K(X̃, X̃) + σnI)
−1y

VARf [δxk] = K(x̃∗, x̃∗)

−K(x̃∗, X̃)(K(X̃, X̃) + σnI)
−1K(X̃, x̃∗)

(10)
This equation is typically only used for prediction of the

next time-step. When conducting multiple-step predictions, it
is necessary to iteratively propagate uncertainties over the
prediction horizon. This issue is addressed as predictions
with uncertain inputs in [27]. Assuming that the joint dis-
tribution of the training input at time k is uncertain and
follows a Gaussian distribution p(x̃k) ∼ N (µ̃k, Σ̃k), the exact
predictive distribution of training target can be defined as
p(δxk) =

∫
p(f(x̃k)|x̃k)p(x̃k)dx̃k. This equation is analyt-

ically intractable, and normally approximated as a Gaussian
with mean µδk and variance Σδ

k by using the moment matching
technique [27, 30]. This results in

µδk = Ex̃k
[Ef [δxk]]

Σδ
k =

 VARf,x̃k
[δxk1 ] · · · COVf,x̃k

[δxkn , δxk1 ]
...

. . .
...

COVf,x̃k
[δxk1 , δxkn ] · · · VARf,x̃k

[δxkn ]


(11)

The distribution at time k+1 can be further approximated by
a Gaussian with mean and variance given by

µk+1 = µk + µδk

Σk+1 = Σk +Σδ
k

+ COVf,x̃k
[xk, δxk] + COVf,x̃k

[δxk,xk]

(12)

More details about the computation of means and variances
for uncertain inputs can be found in [27, 31].

Typically, hyperparameters θ = [σs, σn, vec(Λ)] are learned
by using the evidence maximization technique [32], where
vec(·) denotes vectorization of given matrix. The resulting
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Fig. 2: The Overall Control Scheme for Quadrotors

stochastic optimization problem is conventionally solved by
using Conjugate Gradient (CG) or BFGS approaches. More
recently, Particle Swarm Optimization (PSO) based algo-
rithms [33] have been proposed to solve this problem.

IV. TRAJECTORY TRACKING USING GPMPC
A. Overall Control Scheme

The trajectory tracking problem can be tackled by using a
hierarchical control structure to orderly handle the tracking
problem of the translational subsystem and the corresponding
attitude control of the rotational subsystem [3, 10]. The block
diagram of this structure is shown in Figure 2. In the outer
loop, the translational subsystem is controlled to follow the
sequence of desired positions generated by the “Trajectory
Generator”. The optimal controls U1 are obtained by mini-
mizing the tracking errors in the “Translation Controller” that
also produces desired attitudes θd and ϕd from intermediate
controls ux and uy given by (6). Then, the attitudes of the
rotational subsystem are tuned to achieve the target values
in the inner loop where the desired ψd is always set to
zero. By minimizing the attitude errors again, the optimal
controls U2, U3 and U4 can be obtained from the “Rotation
Controller”. Finally, those optimal control actions are applied
to the quadrotor.

B. Gaussian Process Model Predictive Control

The key issue here is the design of the “Translation Con-
troller” and the “Rotation Controller” given that the transla-
tional and rotational subsystems are represented by GP models.
We propose a GP based MPC algorithm to address this issue.

Consider an unconstrained MPC control problem of the
system given by (8) with the following objective function

V∗
k = min

u(·)
J (xk,uk−1) (13)

where the cost function is given by

J (xk,uk−1) =
H∑
i=1

{
(xk+i − rk+i)

TQ(xk+i − rk+i)

+uTk+i−1Ruk+i−1

} (14)

Here, r denotes the target positions in translational subsystem,
or the target attitudes in rotational subsystem. Q ∈ Rn×n and
R ∈ Rm×m are positive definite weighting matrices, and the
prediction horizon H is assumed to be same as the control
horizon. In addition, because xk are GP predictions, (13)
actually becomes a stochastic one [25, 34].

V∗
k = min

u(·)
E [J (xk,uk−1)] (15)



The expected value of the cost function can be derived as

E [J (xk,uk−1)] = E

[
H∑
i=1

{
(xk+i − rk+i)

TQ(xk+i − rk+i)

+uTk+i−1Ruk+i−1

}]
=

H∑
i=1

E
[
(xk+i − rk+i)

TQ(xk+i − rk+i)

+uTk+i−1Ruk+i−1

]
(16)

Since the values of the controls are deterministic in practice,
the joint distribution of the state-control tuple at sample time
k can be expressed by

p(x̃k) = p

(
xk
uk

)
∼ N

([
µk
uk

]
,

[
Σk COV[xk,uk]

COV[uk,xk] COV[uk,uk]

])
(17)

where COV[xk,uk],COV[uk,xk] and COV[uk,uk] are zero.
Thus the cost function (16) can be simplified to

E [J (xk,uk−1)] =
H∑
i=1

{
(µk+i − rk+i)

TQ(µk+i − rk+i)

+trace(QΣk+i) + uTk+i−1Ruk+i−1

}
(18)

This simplification essentially transformed the stochastic cost
function into a deterministic one. Therefore most linear and
nonlinear optimization methods can be used to solve the
problem. In addition, the propagated uncertainties are included
in the cost function. This provides a straightforward way to
compute desired controls with the consideration of model
uncertainties.

C. Gradient Based Optimization

Solving (15) is computationally demanding. The compu-
tational complexity of the one-step moment matching in
(11) alone requires O(D2n2(n + m)) operations. With the
complexities of hyperparameters learning, i.e. O(nD3), only
problems with limited dimensions (under 12 as suggested by
most publications) and limited size of training data can make
use of GP based MPC. In this section, we shall describe our
gradient-based algorithm that is significantly less demanding
computationally.

Assuming h(z) = E[J (xk,uk−1)], the optimization prob-
lem (15) can be expressed more compactly as

z∗ = argmin
z∈Z

h(z) (19)

h(·) is a value-based differentiable function over the whole
solution domain Z ⊆ Rm. z∗ denotes an optimal solution that
satisfies ▽zh(z∗) = 0 and ▽2

zh(z
∗) ≥ 0. Since the optimiza-

tion approaches using second-order derivatives ▽2
zh(·), such as

Newton’s method, can improve accuracy but is computational
demanding, we only use first-order derivatives ▽zh(·). Note
that both derivatives are available when using GP models [27].

Input: Learning GP Models, H , rk, Q,R.
1 Initialization:

Maximum iterations N = 1000,
ϵ = 1.0× 10−6,
initial inputs u0 and optimal controls u∗ = u0;

2 for i = 1 to N do
3 if E[J (ui)] ≤ ϵ then
4 u∗ = ui;
5 End Loop;
6 else
7 Caculate graidents dE[J (ui)]

dui−1
using (23);

8 Update step length αs accroding to [35];
9 Update controls ui+1 = ui + αs

dE[J (ui)]
dui−1

;
10 i=i+1;
11 end
12 end

Output: Optimal controls u∗.
Algorithm 1: Analytical gradient based optimization
method

The optimal solution z∗ can be obtained by iteratively
conducting a linear or steepest descent search where

z(i+ 1) = z(i) + αs▽zh(z(i)) (20)

with initial guess z0 ⊆ Rm until one that satisfies h(z(i)) −
h(z∗) ≥ ϵ is reached. Here, ϵ is a predefined tolerance, and αs
is the search step size. Using this method, suboptimal solutions
can still be found even if the problem is non-convex.

The key issue in implementing this gradient-based method
on problem (15) is computing the gradients that are derivatives
of the value function w.r.t. controls. Numerical methods such
as finite difference are often used to approximate the gradients
[36]. They are easy to implement but may lead to poor gradi-
ents due to the nature of the approximation methods [37]. With
the use of GP models, the gradients can be readily obtained
analytically without the need for numerical approximations.

Let

Hi =(µk+i − rk+i)
TQ(µk+i − rk+i)

+ trace(QΣk) + uTk+i−1Ruk+i−1

(21)

Then from (18), E [J (xk,uk−1)] =
∑H
i=1 Hi. The gradients

can be expressed, using the chain-rule, as

d

duk−1
E [J (xk,uk−1)] =

H∑
i=1

dHi

duk+i−1
(22)

and
dHi

duk+i−1
=

∂Hi

∂µk+i

∂µk+i
∂uk+i−1

+
∂Hi

∂Σk+i

∂Σk+i

∂uk+i−1
+

∂Hi

∂uk+i−1

(23)

where ∂Hk

∂µk
, ∂Hk

∂Σk
and ∂Hk

∂uk−1
can be easily obtained. Also,

∂µk+i
∂uk+i−1

=
∂µk+i
∂µ̃k+i−1

∂µ̃k+i−1

∂uk+i−1

∂Σk+i

∂uk+i−1
=

∂Σk+i

∂Σ̃k+i−1

∂Σ̃k+i−1

∂uk+i−1

(24)



where ∂µ̃k+i−1

∂uk+i−1
and ∂Σ̃k+i−1

∂uk+i−1
can be easily obtained as well.

Algorithm 1 summarizes our gradient based algorithm for the
optimization problem in each iteration of the MPC.

V. NUMERICAL SIMULATIONS

The performance of the proposed approach to trajectory
tracking is evaluated by computer simulation. A “Lorenz”
trajectory (shown as red dotted line in Figure 5) is used in the
presence of external Gaussian white noise with zero mean and
unit variance. The aerodynamic forces and moments, as well as
other parameters used in translational and rotational dynamical
equations are the same as those used in [3]. All simulations
are conducted 50 times on a computer with a 3.40GHz Intelr
CoreTM 2 Duo CPU with 16 GB RAM, using Matlabr version
8.1.

To collect training data, we use the hierarchical scheme
shown in Figure 2 but based on deterministic dynamical mod-
els (5) and (7), and the “min-max” Nonlinear Model Predictive
Control (NMPC) method proposed in [24]. 170 observations
including states and controls are used to train the GP models
of two subsystems. For the rotational subsystem, the data are
scaled to the range [0.1, 0.9]. This is necessary mainly due to
the large numerical ranges in the original data. For example,
the unscaled angle ϕ lies in the range [−1.57, 1.57] while
input U4 lies in the range [−3.2, 6.2] × 10−8. The scaled
data leads to much improved training results. The training of
all GP models takes 4.5 seconds. The Mean Squared Error
(MSE) values of obtained models for two subsystems are very
small, i.e. 1.8693×10−7 and 8.5238e×10−9 respectively for
the translational and rotational models. This implies that the
models are well trained.

These GP models are used to predict future quadrotor
positions and attitudes in the process of designing “Translation
Controller” and “Rotation Controller”. Theoretically, a “suf-
ficiently long” prediction horizon H is required to guarantee
stability of the MPC scheme [38]. Here, we use the shortest
prediction and control horizon of 1 to test our control method
at extreme conditions. The positions and attitudes produced
by using GPMPC schemes are shown in Figures 3a and 3b.
The “Reference” is the Lorenz trajectory. “G-PMPC” denotes
the GPMPC solved by our analytical gradient based algorithm,
and “PMPC” denotes the one solved without using gradient
information. These two figures show that both “PMPC” and
“G-PMPC” closely follow the reference positions and attitudes
over the whole trajectory. The tracking MSE given in Table I
shows that “PMPC” generally produces slightly better results
than “G-PMPC”. These are to be expected as they solved the
same problem. The difference lies mainly in the computational
efficiency. “G-PMPC” takes only 27% and 32% of the time
required by “PMPC” for position and attitude control respec-
tively while producing very similar control performances. This
shows that the gradient based algorithm is both efficient and
effective.

The overall trajectory tracking results are depicted in Fig-
ure 5.

TABLE I: MSE values of position tracking and attitude control
using GP based MPC schemes in the “Lorenz” trajectory
tracking problem.

MSE Values
G-PMPC PMPC

Position X 3.3418× 10−4 4.3401× 10−4

Position Y 5.1399× 10−5 1.6264× 10−5

Position Z 0.0010 0.0010
Attitude ϕ 1.5743× 10−8 4.3030× 10−9

Attitude θ 5.5213× 10−9 2.5044× 10−9

Attitude ψ 6.4365× 10−14 6.4368× 10−14
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VI. CONCLUSIONS

A GP based MPC strategy is proposed for the trajectory
tracking problem of a quadrotor. The overall control structure
is a hierarchical scheme that consists of two separate MPC
controllers for the translational and rotational subsystem re-
spectively. GP models of the dynamics of these two subsys-
tems are learnt from empirical data. The GPMPC scheme is
able to account for model uncertainties when computing MPC
controls. In addition, a computationally efficient analytical
gradient based algorithm to solve the GPMPC optimization
problem is proposed. Simulation results show that the GPMPC
is able to track a non-trivial trajectory very well. They also
show that the analytical gradient based algorithm significantly
reduces computational demand in solving the optimization
problem.
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