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GP Model — Standard GP

p(f)
Convolved GP 3
Models
Gaussian distribution Gaussian processes
Standard GP f~N(p,o?) £~ GP(u(), cov(-))

» GP: A collection of random variables with a joint
Gaussian distribution among any finite number of

them
» Fully specified by mean and variance functions

p(x*) = Kee ¢ (Ke g +0°T) "y

(1)
var(x*) = K« g+ + 0% — Kg« ¢ (K g + 0°I) " Kg g+
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» Construct a new covariance function
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» input-output correlations
» correlations between outputs

» No additional computations of inference and
predictions.
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» Unclear indication of model quality;

Search Range [0,100] Search Range [0,1]

Fitness 1 Fitness 2 Fitness 1 Fitness 2
NLL =~ 5l =~ 46 =~ 242269 =~ 212314
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Simlation Results — Design

Numerical Example:

— > MISO Modelling Problem
o8O for y(k) = 0.893y(k —1) +0.037y*(k — 1)
Models —0.05y(k — 2) + 0.157u(k — 1)
—0.05u(k — 1)y(k — 1) (4)

> Y1 =Y, Y2 = —Y1 Or Yo = exp(y1)
» Generate 1000 observations

» Each simulation repeats 10 times

Experimental Parameters:

Simulation Design

Symbol Description Quantity
Tnax Maximum Iterations 2000
€1,C2 Acceleration Factors 1.49445
Wstart Start Inertial Factor 0.4
Wend End Inertial Factor 0.9

k Shape Control Factor 0.8
CG Restarts Restart Times 25 x 2000
[[Ag]] Minimum Fitness Variation le — 5
Vi, Ug Coefficients Search Range [1,2]
i, By P4, PqElements Search Range [0,1]
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» Population number 25 is used in the simulations
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Simulation Results within certain or uncertain search ranges.

» Similar performance when search space is well-defined

» PSO has better performance with unknown or large
search space
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» Model with PSO produces smaller average MSE and
SE within a uncertain search range

» CGP model with PSO performs well both for linear
and nonlinear problems
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