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A comparison of different model for learning question.
Original model is y = x3 and corrupted by a noise ϵ ∼ N (0, 0.5).
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I CGP Learning using PSO
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GP Model – Standard GP

p(f)

Gaussian distribution

f ∼ N (µ, σ2)

p(f1)

p(f2)

p(fn)

Gaussian processes

f ∼ GP(µ(·), cov(·))

I GP: A collection of random variables with a joint
Gaussian distribution among any finite number of
them

I Fully specified by mean and variance functions

µ(x∗) = Kf∗,f (Kf ,f + σ2I)−1y

var(x∗) = Kf∗,f∗ + σ2 −Kf∗,f (Kf ,f + σ2I)−1Kf ,f∗ .
(1)
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GP Model – Multi-Output GP

Question: MIMO problem using GP model?
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GP Model – Multi-Output GP

Convolved Gaussian process models:

I Construct a new covariance function


K11 · · · K1n

K21 · · · K2n

...
...

...

Kn1 · · · Knn

 (2)

I input-output correlations
I correlations between outputs

I No additional computations of inference and
predictions.
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GP Model – Model Learning

The log-likelihood function:

L (θ) = −1

2
yT

K−1
y,y

y− 1

2
log

∣∣∣∣ Ky,y

∣∣∣∣−MJ

2
log 2π (3)

I Maximizing the Log-likelihood

I Commonly used technique – CG

Questions?

I Sensitive to initial values;

I Unclear indication of model quality;
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Fitness 1 Fitness 2 Fitness 1 Fitness 2

NLL ≈ 51 ≈ 46 ≈ 242269 ≈ 212314

MSE 0.5313 0.2199 0.0101 0.0032
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GP Model – CGP learning using PSO

PSO for CGP Model Learning

I Better global search

I Easy-to-use

Works in this paper:

I Explore CGP learning using PSO

I Use MSE as fitness;



PSO for
Convolved GP

Models

Introduction

Gaussian Process
Models

Standard GP

Multi-Output GP

Model Learning

CGP Learning using
PSO

Simulation Results

Simulation Design

Simulation Results

Conclusion

Future Works

10/20

GP Model – CGP learning using PSO

PSO for CGP Model Learning
I Better global search

I Easy-to-use

Works in this paper:

I Explore CGP learning using PSO

I Use MSE as fitness;



PSO for
Convolved GP

Models

Introduction

Gaussian Process
Models

Standard GP

Multi-Output GP

Model Learning

CGP Learning using
PSO

Simulation Results

Simulation Design

Simulation Results

Conclusion

Future Works

10/20

GP Model – CGP learning using PSO

PSO for CGP Model Learning
I Better global search

I Easy-to-use

Works in this paper:

I Explore CGP learning using PSO

I Use MSE as fitness;



PSO for
Convolved GP

Models

Introduction

Gaussian Process
Models

Standard GP

Multi-Output GP

Model Learning

CGP Learning using
PSO

Simulation Results

Simulation Design

Simulation Results

Conclusion

Future Works

10/20

GP Model – CGP learning using PSO

PSO for CGP Model Learning
I Better global search

I Easy-to-use

Works in this paper:

I Explore CGP learning using PSO

I Use MSE as fitness;



PSO for
Convolved GP

Models

Introduction

Gaussian Process
Models

Standard GP

Multi-Output GP

Model Learning

CGP Learning using
PSO

Simulation Results

Simulation Design

Simulation Results

Conclusion

Future Works

10/20

GP Model – CGP learning using PSO

PSO for CGP Model Learning
I Better global search

I Easy-to-use

Works in this paper:
I Explore CGP learning using PSO

I Use MSE as fitness;



PSO for
Convolved GP

Models

Introduction

Gaussian Process
Models

Standard GP

Multi-Output GP

Model Learning

CGP Learning using
PSO

Simulation Results

Simulation Design

Simulation Results

Conclusion

Future Works

10/20

GP Model – CGP learning using PSO

PSO for CGP Model Learning
I Better global search

I Easy-to-use

Works in this paper:
I Explore CGP learning using PSO

I Use MSE as fitness;



PSO for
Convolved GP

Models

Introduction

Gaussian Process
Models

Standard GP

Multi-Output GP

Model Learning

CGP Learning using
PSO

Simulation Results

Simulation Design

Simulation Results

Conclusion

Future Works

11/20

Simulation Results

I Simulation Design

I Simulation Results
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Simlation Results – Design

Numerical Example:
I MISO Modelling Problem

y(k) = 0.893y(k − 1) + 0.037y2(k − 1)

−0.05y(k − 2) + 0.157u(k − 1)

−0.05u(k − 1)y(k − 1) (4)

I y1 = y, y2 = −y1 or y2 = exp(y1)

I Generate 1000 observations

I Each simulation repeats 10 times

Experimental Parameters:

Symbol Description Quantity

Tmax Maximum Iterations 2000

c1,c2 Acceleration Factors 1.49445

ωstart Start Inertial Factor 0.4

ωend End Inertial Factor 0.9

k Shape Control Factor 0.8

CG Restarts Restart Times 25× 2000

∥∆ξ∥ Minimum Fitness Variation 1e− 5

νd,i, υq Coefficients Search Range [1, 2]

αi, βj Pd, PqElements Search Range [0, 1]
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Simlation Results – Results

Simulation 1 – Modelling with Missing Data

I Similar performance with full data

I CGP has better performance with miss data



PSO for
Convolved GP

Models

Introduction

Gaussian Process
Models

Standard GP

Multi-Output GP

Model Learning

CGP Learning using
PSO

Simulation Results

Simulation Design

Simulation Results

Conclusion

Future Works

13/20

Simlation Results – Results

Simulation 1 – Modelling with Missing Data

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y 1

 

 Observations
True function
IGP model mean

(c) y1 – IGP with full data
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(d) y1 – CGP with full data

I Similar performance with full data

I CGP has better performance with miss data
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(e) y2 – IGP with miss data
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(f) y2 – CGP with miss data

I Similar performance with full data

I CGP has better performance with miss data



PSO for
Convolved GP

Models

Introduction

Gaussian Process
Models

Standard GP

Multi-Output GP

Model Learning

CGP Learning using
PSO

Simulation Results

Simulation Design

Simulation Results

Conclusion

Future Works

13/20

Simlation Results – Results

Simulation 1 – Modelling with Missing Data

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y 1

 

 
Observations
True function
IGP model mean
CGP model mean

(g) y1 with full data

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y 2

 

 Observations
True function
IGP model mean
CGP model mean

(h) y2 with miss data
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Simlation Results – Results

Simulation 2 – MISO System Modelling
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PSO/1
PSO/2

Results of MISO modelling problem.
PSO/2 denotes PSO with MSE fitness, while PSO/2 is PSO with LL fitness.

I 2 PSOs have similar performance

I Population number 25 is used in the simulations
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Simlation Results – Results

Simulation 3 – MISO System Modelling
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PSO/2
CG

Statistic Results of MISO system modelling.
PSO/2 denotes PSO with MSE fitness.

I Similar performance when search space is well-defined

I PSO has better performance with unknown or large

search space
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Simulation 3 – MISO System Modelling
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(l) Uncertain Search range

Model prediction comparison
within certain or uncertain search ranges.

I Similar performance when search space is well-defined

I PSO has better performance with unknown or large

search space
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Simlation Results – Results

Simulation 4 – MIMO System Modelling
I Two outputs are correlated

I Linear and nonlinear correlations

I Model with PSO produces smaller average MSE and
SE within a uncertain search range

I CGP model with PSO performs well both for linear

and nonlinear problems
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Simlation Results – Results

Simulation 4 – MIMO System Modelling
I Two outputs are correlated

I Linear and nonlinear correlations
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(m) y2 = −y1
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(n) y2 = exp(y1)

I Model with PSO produces smaller average MSE and
SE within a uncertain search range

I CGP model with PSO performs well both for linear

and nonlinear problems
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(o) y2 = −y1
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(p) y2 = exp(y1)

I Model with PSO produces smaller average MSE and
SE within a uncertain search range

I CGP model with PSO performs well both for linear

and nonlinear problems
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Simulation 4 – MIMO System Modelling
I Two outputs are correlated
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(q) y2 = −y1
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(r) y2 = exp(y1)

I Model with PSO produces smaller average MSE and
SE within a uncertain search range

I CGP model with PSO performs well both for linear

and nonlinear problems
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Conclusion

I Better modelling ability for missing-data problems

I Clear indications of MSE than LL fitness

I Better learning ability for uncertain search range

I Work well for linear and nonlinear systems
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Future Works

I More complex questions:NLTI to NLTV

I Use improved PSO methods
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Thanks!
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Questions?
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