
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Gaussian Process based Model Predictive Control

Gang Cao

A thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Engineering

School of Engineering and Advanced Technology

Massey University

New Zealand

February 17, 2017

Abstract

The performance of using Model Predictive Control (MPC) techniques is highly depen-
dent on a model that is able to accurately represent the dynamical system. The data-
driven modelling techniques are usually used as an alternative approach to obtain such
a model when first principle techniques are not applicable. However, it is not easy to
assess the quality of learnt models when using the traditional data-driven models, such
as Artificial Neural Network (ANN) and Fuzzy Model (FM). This issue is addressed in
this thesis by using probabilistic Gaussian Process (GP) models.

One key issue of using the GP models is accurately learning the hyperparameters.
The Conjugate Gradient (CG) algorithms are conventionally used in the problem of
maximizing the Log-Likelihood (LL) function to obtain these hyperparameters. In this
thesis, we proposed a hybrid Particle Swarm Optimization (PSO) algorithm to cope with
the problem of learning hyperparameters. In addition, we also explored using the Mean
Squared Error (MSE) of outputs as the fitness function in the optimization problem.
This will provide us a quality indication of intermediate solutions.

The GP based MPC approaches for unknown systems have been studied in the past
decade. However, most of them are not generally formulated. In addition, the opti-
mization solutions in existing GP based MPC algorithms are not clearly given or are
computationally demanding. In this thesis, we first study the use of GP based MPC ap-
proaches in the unconstrained problems. Compared to the existing works, the proposed
approach is generally formulated and the corresponding optimization problem is effi-
ciently solved by using the analytical gradients of GP models w.r.t. outputs and control
inputs. The GPMPC1 and GPMPC2 algorithms are subsequently proposed to handle
the general constrained problems. In addition, through using the proposed basic and
extended GP based local dynamical models, the constrained MPC problem is effectively
solved in the GPMPC1 and GPMPC2 algorithms. The proposed algorithms are verified
in the trajectory tracking problem of the quadrotor.

The issue of closed-loop stability in the proposed GPMPC algorithm is addressed
by means of the terminal cost and constraint technique in this thesis. The stability
guaranteed GPMPC algorithm is subsequently proposed for the constrained problem. By
using the extended GP based local dynamical model, the corresponding MPC problem
is effectively solved.

i

ii

Acknowledgements

I am deeply grateful to my co-supervisor Professor Edmund M-K Lai at Auckland Uni-
versity of Technology who was my primary supervisor during my first three years of Ph.D
study at Massey University. His supervision is great and I am always inspired by the
valuable discussions with him. He spent a lot of time on my academic writing and helped
me attend several international and local academic conferences. I would not be successful
in my Ph.D study without his longstanding support.

I am sincerely appreciative of Dr. Fakhrul Alam who is my primary supervisor in
my last year at Massey University for his sharing of ideas and inspiration on possible
applications. He helped a lot when I was preparing my thesis draft.

I wish to thank the administrators and technicians of SEAT in Massey University’s
Albany Campus for their countless help.

Finally, I want to thank my family for their love and support.

iii

iv

Contents

Abstract . i

Acknowledgements . iii

List of Figures . ix

List of Tables . xii

List of Abbreviations . xv

1 Introduction 1

1.1 Background and Motivations . 1

1.2 Research Scope and Objectives . 4

1.3 Original Contributions . 5

1.4 Thesis Outline . 6

2 Literature Review 7

2.1 Data-driven Modelling . 7

2.1.1 Classical Regression . 8

2.1.2 Bayesian Regression . 9

2.2 Gaussian Process Models . 11

2.2.1 Standard Gaussian Process Models 11

2.2.2 GP models for Multiple Outputs 13

2.3 Hyperparameter Learning . 19

2.4 Applications of GP Models . 21

2.4.1 GP Modelling of Unknown Nonlinear System 21

2.5 GP Applications on Control . 22

v

2.5.1 Inverse Dynamics Control . 22

2.5.2 Adaptive Control . 22

2.5.3 Model Predictive Control . 23

3 Hybrid PSO for Hyperparameters Learning 25

3.1 Log-Likelihood and MSE Fitness Functions 26

3.2 Enhanced PSOs for Hyperparameter Learning 28

3.2.1 Standard PSO . 29

3.2.2 Multi-Start PSO . 30

3.2.3 Gradient-based PSO . 31

3.2.4 Hybrid PSO . 32

3.3 Simulation Results . 34

3.3.1 Standard PSO with MSE Fitness 35

3.3.2 Two-output Modelling . 37

3.3.3 Enhanced PSO Algorithms . 38

3.4 Conclusion . 44

4 Unconstrained Model Predictive Control Using Gaussian Process Mod-
els 47

4.1 Unconstrained MPC based on GP Models 47

4.1.1 Unknown Dynamical System Modelling using GP 47

4.1.2 Uncertainty propagation . 48

4.1.3 GP based MPC . 50

4.1.4 Gradient Based Optimization . 51

4.2 Simulation Results . 53

4.2.1 Numerical Simulations of LTV System 53

4.2.2 “Lorenz” Trajectory Tracking . 56

4.2.3 Numerical Simulations of NLTV System 58

4.2.4 “Lorenz” Trajectory . 60

4.3 Conclusion . 63

vi

5 Constrained Model Predictive Control Using Gaussian Process Models 65

5.1 GP Based Local Dynamical Models . 66

5.1.1 Basic GP based Local Model . 66

5.1.2 Extended GP based Local Model 67

5.2 GPMPC1 Algorithm . 68

5.2.1 MPC Trajectory Tracking Problem Formulation 68

5.2.2 Problem Reformulation based on GP 69

5.2.3 Nonlinear Optimization Solution 70

5.2.4 Application to GPMPC1 . 72

5.3 GPMPC2 Algorithm . 74

5.3.1 Problem Reformulation using Extended GP Local Model 75

5.3.2 Quadratic Programming Solution 77

5.4 Stability Analysis . 81

5.5 Simulation Results . 82

5.5.1 Nonlinear Numerical Example . 83

5.5.2 Unknown System Learning Results 84

5.5.3 Unknown System Control Results 86

5.6 Conclusion . 87

6 Quadrotor Control using GPMPC 89

6.1 Quadrotor Dynamical Equations . 89

6.2 Quadrotor Control using GPMPC . 93

6.2.1 Overall Control Scheme . 93

6.2.2 GP Learning of Quadrotor Dynamic Equations 94

6.2.3 GPMPC2 for Quadrotor Trajectory Tracking Control 94

6.3 Simulation Results . 95

6.3.1 Modelling Results . 96

6.3.2 Control Results . 97

6.4 Conclusion . 98

vii

7 Stability Guaranteed GPMPC 103

7.1 Stability Guaranteed GPMPC Algorithm 104

7.1.1 Terminal Cost and Constraints 104

7.1.2 Problem Formulation . 105

7.1.3 Solution . 106

7.1.4 Stability Analysis . 109

7.2 Conclusions . 110

8 Conclusions and Future Works 113

8.1 Conclusions . 113

8.2 Future Works . 115

Appendix A Mean and Variance at uncertain inputs 117

Appendix B Cross-covariance between GP States and Outputs 119

Appendix C GP Derivatives 121

Appendix D Cost Function using GP 123

Appendix E Karush-Kuhn-Tucker (KKT) Conditions for Convex Opti-
mization Problem 125

Appendix F List of Publications 127

References 129

viii

List of Figures

1.1 Model-based Predictive Control Strategy 2

2.1 Example showing the predicted outputs of IGP modelling 13

2.2 Structure of a Dependent Gaussian Process Model 15

3.1 Obtained MAE in the single-output dynamical system modelling over 50
runs . 36

3.2 Predicted outputs in the single-output simulations 37

3.3 MIMO dynamical system modelling results: MAE and 2 standard errors
(divided by 0.01) over 50 runs . 38

3.4 Convergence behaviour of the four PSO algorithms in modelling the LTV
system . 40

3.5 Reference PFDL inputs and outputs for the two trajectories 42

3.6 Convergence behaviour of the four PSO algorithms with LL fitness in
modelling the NLTV system . 43

3.7 Convergence behaviour of the four PSO algorithms with MSE fitness in
modelling the NLTV system . 44

4.1 GP Modelling results of unknown Linear Time-Varying (LTV) system in
the “Duffing” trajectory tracking problem 54

4.2 Simulation results of using GP based MPC in the “Duffing” trajectory
tracking problem . 55

4.3 GP Modelling results of unknown LTV system in the “Lorenz” trajectory
tracking problem . 57

4.4 Simulation results of using GP based MPC in the “Lorenz” trajectory
tracking problem . 57

ix

4.5 Uncertainty propagation over the sampling time in the trajectory tracking
problems of the LTV system . 58

4.6 GP Modelling results of unknown Nonlinear Time-Varying (NLTV) system
in the “Curve” trajectory tracking problem 59

4.7 Simulation results of using GP based MPC in the “Curve” trajectory track-
ing problem . 60

4.8 GP Modelling results of unknown NLTV system in the “Lorenz” trajectory
tracking problem . 61

4.9 Simulation results of using GP based MPC in the “Lorenz” trajectory
tracking problem . 62

4.10 Uncertainty propagation over the sampling time in the trajectory tracking
problems of the NLTV system . 62

5.1 Training errors over the sampling time in the trajectory tracking simulations 84

5.2 Simulation result of tracking the “Step” trajectory using the proposed
algorithms . 85

5.3 Simulation result of tracking the “Lorenz” trajectory using the proposed
algorithms . 85

5.4 Simulation result of tracking the “Duffing” trajectory using the proposed
algorithms . 86

5.5 Integral Absolute Errors (IAE) over the sampling time in the trajectory
tracking simulations . 87

6.1 Quadrotor Body-Inertial Frame . 90

6.2 Schematic diagram of quadrotor movements. Where Ω denotes the speed
of propellers, and ΔΩ represents the increment on Ω. 91

6.3 The Overall Control Scheme for Quadrotors 94

6.4 Modelling results of using GP modelling technique in the “Elliptical” tra-
jectory tracking problem . 97

6.5 Modelling results of using GP modelling technique in the “Lorenz” trajec-
tory tracking problem . 98

6.6 Simulation results of tracking the “Elliptical” trajectory using the GPMPC2
based approach . 99

6.7 Simulation results of tracking the “Lorenz” trajectory using the GPMPC2
based approach . 100

x

6.8 “Elliptical” and “Lorenz” trajectory tracking results of using the GPMPC2
based approach . 101

xi

xii

List of Tables

3.1 NLL and MSE values of two Convolved Gaussian Process (CGP) models
of system described by (3.2). 27

3.2 Parameters used in the simulations . 34

3.3 Comparison of two PSOs with different population sizes 36

3.4 Results of Linear Relationship . 37

3.5 Results of Nonlinear Relationship . 37

3.6 CGP model accuracies over 50 runs for the LTV system. 40

3.7 CGP model accuracies over 50 runs for the NLTV system. 43

3.8 Effects of training data size on model error and hybrid PSO runtime. . . 44

5.1 Simulation Results of learning the unknown nonlinear system by using GP
models . 84

5.2 Runtime required to compute 189 control inputs by using the proposed
algorithms in the trajectory tracking simulations 87

6.1 Modelling MSE values of the translational and rotational subsystems using
the GP models in the trajectory tracking problems 97

xiii

xiv

List of Abbreviations

ANN Artificial Neural Network

BFGS Broyden-Fletcher-Goldfarb-Shanno

CG Conjugate Gradient

CGP Convolved Gaussian Process

DGP Dependent Gaussian Process

DMC Dynamic Matrix Control

DOF Degree-of-Freedom

FM Fuzzy Model

FP-SQP Feasibility-Perturbed Sequential Quadratic Programming

GA Genetic Algorithm

GMV Generalized Minimum Variance

GP Gaussian Process

GPC Generalized Predictive Control

GPDM Gaussian Process Dynamical Model

IAE Integral Absolute Error

IDC Inverse Dynamics Control

IGP Independent Gaussian Process

KKT Karush-Kahn-Tucker

LGP Local Gaussian Process

LL Log-Likelihood

xv

LMC Linear Model of Coregionalization

LMI Linear Matrix Inequality

LQR Linear-Quadratic Regulator

LTV Linear Time-Varying

GP-LVM Gaussian Latent Variable Model

MAE Mean Absolute Error

MAP Maximizing A Posterior

MCMC Markov Chain Monte Carlo

MFAC Model-Free Adaptive Control

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

ML Machine learning

MLE Maximum Likelihood Estimation

MPC Model Predictive Control

mp-QP Multi-Parametric Quadratic Programs

MSE Mean Squared Error

NLL Negative value of Log-Likelihood

NLTV Nonlinear Time-Varying

NMPC Nonlinear Model Predictive Control

PCA Principal Component Analysis

PFC Predictive Functional Control

PFDL Partial Form Dynamic Linearization

PSO Particle Swarm Optimization

QP Quadratic Programming

RBFN Radial Basis Function Network

SMPC Stochastic Model Predictive Control

SQP Sequential Quadratic Programming

UAV Unmanned Aerial Vehicle

xvi

Chapter 1

Introduction

1.1 Background and Motivations

Model Predictive Control (MPC), also known as receding horizon control [1], refers to a

class of computer control algorithms that predict future responses of a plant based on

an explicit process model, and compute optimized control inputs by repeatedly solving a

finite horizon optimization problem. The advantages of MPC mainly lie in its conceptual

simplicity for multiple variable problems, and its ability to handle input and output“hard-

constraints” that are commonly encountered in practice but are not well addressed in

other control methods.

Figure 1.1 illustrates the MPC control strategy. At sampling time i, the future outputs

ŷ(i) within the prediction horizon [i, i+Hp] are predicted by a system model based on past

inputs and outputs y(i) as well as future control inputs, where Hp denotes the prediction

horizon. The control inputs are computed by optimizing an objective function so that

the predicted output is as close to the desired “Reference Trajectory” as possible within

the control horizon [i, i+Hc]. where Hc denotes the control horizon. Only the first term

of the obtained control sequences u(·) is subsequently applied to the real system. The

whole optimization process will be repeated at next sampling time (i+ 1).

The performance of MPC techniques is highly dependent on a model that is able

to accurately represent the dynamical system being controlled. Conventionally, such a

model is mathematically derived based on theoretical analysis of the underlying physical

principles of the dynamical system. For example, the dynamical models of a quadrotor are

mathematically derived by the analysis of flight dynamics based on the Newton-Euler

1

Chapter 1. Introduction

Input Constrains

Reference Trajectory
Past Future

Measured y(i) Predicted ŷ(i)

i− 2 i− 1 i i+ 1 i+ 2 i+Hc i+Hp

Control Horizon

Prediction Horizon

Predicted Control Sequences u(·)

Figure 1.1: Model-based Predictive Control Strategy

or Euler-Lagrange equations [2, 3]. However, it is difficult to use this first principles

approach when the system dynamics are too complex or are totally unknown. In such

cases, an alternative approach is to use data-driven modelling techniques that are based

on computational intelligence and machine learning.

Data-driven models are constructed entirely from empirical data. An additional bene-

fit in using this approach is that the empirical data may capture unknown and unmodelled

dynamics of the system. One of the most commonly used data-driven models are Fuzzy

Model (FM). They have been used to model many types of systems including solar power

generation systems [4], traffic flows [5] and quadrotors [6]. Another popular type of data-

driven model is the Artificial Neural Network (ANN). For example, ANN models have

also been used to model the complete dynamics of a quadrotor [7–11]. While FM and

ANN are useful and versatile, assessing the quality of the models learnt from a finite

amount of data is not easy. For ANN, some methods such as Maximum Likelihood Es-

timation (MLE) [12], bootstrap [13, 14] and Bayesian analysis techniques [15, 16] have

been proposed. But these methods do not arise naturally from the model and therefore

requires additional computations to implement.

More recently, probabilistic Gaussian Process (GP) models which are based on the

Bayesian technique have been proposed and attracted much attention [17]. The ma-

jor advantage of GP model is that the quality of the model obtained can be evalu-

2

Chapter 1. Introduction

ated by GP variances which are naturally obtained during the modelling and prediction

processes. While the standard GP model is designed for systems with Multiple-Input

Single-Output (MISO), Dependent Gaussian Process (DGP) [18] and Convolved Gaus-

sian Process (CGP) [19] models have been proposed for Multiple-Input Multiple-Output

(MIMO) systems to take into account correlations between outputs [20]. A key part

of the modelling process is the learning of the model hyperparameters from data. It

is typically performed by maximizing the Log-Likelihood (LL) function which leads to

an unconstrained nonlinear and non-convex optimization problem. Algorithms, such as

Conjugate Gradient (CG) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) are commonly

used. However, the algorithms tend to be stuck in local optima, especially for CGP which

has a higher problem dimension than GP. Furthermore, the LL value is not a reliable

indicator for judging the quality intermediate models in the optimization process. A

more effective optimization algorithm and a more physically meaningful indicator than

the LL would be preferred.

The advantage of using GP model with MPC is that when multiple-step predictions

are computed with uncertain inputs, the variance of the GP model, which is a measure of

uncertainty, propagates naturally. A GP based MPC scheme was first introduced in [21]

for nonlinear systems. It has subsequently been applied to the control of a gas-liquid

separator in [22]. However these publications do not contain any discussions on the

solution methods for the optimization problems involved. In addition, the cost functions

that have been used in the MPC control problem are quite simple in two respects. First,

the cost function has a penalty term only on the states/outputs. This reflects the control

objective of minimizing the error between model outputs and target values. It also

makes the optimization problems simpler to solve. However, in practice, a penalty term

on the control inputs is typically needed to limit control actions to avoid over-use of the

actuators. In [23], this later penalty term was added. The resulting problem is solved

using a multi-parametric technique to compute an explicit look-up table of control inputs

offline. But this method could be computationally demanding since the number of table

entries grows exponentially with the prediction horizon as well as the input and state

dimensions. Secondly, since the states/outputs of a GP model are random variables,

the objective function in the optimization problem should be the expectation of cost

function instead of the cost function itself [24]. This issue remains unsolved in all works

mentioned above where they simply replaced the state variables by GP mean variables in

the cost function. A recent work in [25] addresses this issue by using the cost function’s

expectation. This allows the GP variances to be directly included in the cost function.

3

Chapter 1. Introduction

However, only unconstrained MPC problems have been considered. To the best of this

author’s knowledge, constrained GP based MPC with the cost function’s expectation as

the objective function remains an open problem.

Stability is a key issue for control systems. The stability of GP based MPC schemes

has so far been largely ignored by researchers. This issue can be approached by increasing

the prediction and control horizon to infinity [2], or by introducing appropriate terminal

cost and constraints [26]. In [27], a penalty term on the terminal state has been incor-

porated. But the authors did not provide any stability analysis. Therefore, a stability

guaranteed GP based MPC method is badly needed.

1.2 Research Scope and Objectives

In view of the current status of research in GP based MPC, the main aim of this research

is to develop effective GP based MPC schemes for the control of nonlinear dynamical

systems with totally unknown dynamics. The unknown dynamics are modelled by GP

models based on empirical input and output observations. Trajectory tracking control

will be used as the focus of the control problem.

There are four specific research objectives. The first objective relates to the develop-

ment of a more effective optimization algorithm and the use of an objective function that

is a physically more meaningful measure of the quality of the intermediate and final solu-

tions. The problem of getting stuck into local optimum in commonly used CG and BFGS

algorithms is due to the sensitiveness to initial values. This issue was partly overcome

by standard Particle Swarm Optimization (PSO) algorithms [28, 29]. However, poor

initializations can lead to poor global search ability, and they exhibit slow convergence

due to poor local search ability.

The second research objective is to address the deficiencies of existing research on

open-loop GP based MPC schemes discussed in the previous section. The appropriate

objective function which is the expected value of the cost function will be used. Effec-

tive and computationally efficient algorithms also be developed for solving the resulting

unconstrained and constrained optimization problems. The algorithms developed will be

tested on a quadrotor system assuming that the system dynamics are unkonwn. The

third objective is therefore to verify the effectiveness of these algorithms for a trajectory

tracking problem with the quadrotor.

4

Chapter 1. Introduction

The stabilizing of proposed open-loop GP based MPC approach is the final research

objective. The use of terminal cost and constraints will be studied for this purpose. The

proposed method must be theoretically proven to be stable.

1.3 Original Contributions

The original contributions in this thesis are as follows:

A new hybrid PSO algorithm is proposed for the learning of hyperparameters of CGP

models. Compared to the existing standard PSO based methods for the GP models [28,

29], the proposed algorithm has better global search ability in the ”exploration” phase

due to the use of “multi-start” technique, and has better local search ability in the

”exploitation” phase due to the use of “gradient” information. In addition, the Mean

Squared Error (MSE) of the outputs has been shown to be effective as the fitness function

for this learning problem. This allows us to directly assess the quality of intermediate

solutions.

A GP based MPC algorithm is proposed for the unconstrained control of unknown

nonlinear systems. An efficient solution has been developed to solve this optimization

problem by making use of the GP gradients w.r.t. means, variances and control inputs.

Two new GP based MPC formulations, namely GPMPC1 and GPMPC2, have been

developed for the constrained control of unknown nonlinear systems. They offer two

different ways to include model uncertainty in the formulation. GPMPC1 introduces a

variance term (which reflects the model uncertainty) into the objective function while

for GPMPC2, variance is part of the state variable. Two corresponding GP local linear

models are derived to relax the nonlinear, non-convex optimization problems to ones

that are solvable by existing optimization methods. Simulation results showed that both

GPMPC1 and GPMPC2 are equally good for solving the trajectory tracking problem for

an unknown nonlinear system. Furthermore, GPMPC2 has been shown to be effective

in solving the trajectory tracking problem for a quadrotor system.

Finally, a stability guaranteed GP based MPC algorithm has been proposed. This

addressed an issue that has so far been largely ignored by the research community. The

proposed method makes use of the terminal cost and constraint technique. The resulting

constrained optimization problem has been found to be more complicated than the ones

in GPMPC1 and GPMPC2. However, it can still be efficiently solved by using the active-

5

Chapter 1. Introduction

set approach in conjunction with the GP local linear models derived for GPMPC1 and

GPMPC2. Mathematical proof of stability based on the Lyapunov theory is provided.

1.4 Thesis Outline

The rest of this thesis is organized as follows.

The literatures related to GP modelling and its applications to unknown dynamic

systems and control are reviewed in Chapter 2. In Chapter 3, a new hybrid PSO algorithm

is proposed for the problem of hyperparameter learning. Chapter 4 is concerned with

the unconstrained tracking problem of unknown systems while Chapter 5 deals with the

constrained version of the problem. GP based MPC algorithms are presented for these

problems. In Chapter 6, the most effective GP based MPC scheme, known as GPMPC2,

is applied to the trajectory tracking problem of the quadrotor. A GPMPC algorithm

that has guaranteed stability is presented in Chapter 7. Finally, Chapter 8 concludes the

thesis.

6

Chapter 2

Literature Review

In this chapter, GP as a data-driven modelling tool is reviewed. Following a brief overview

of classical and Bayesian regression in Section 2.1, the focus is turned to Gaussian Process

modelling in Section 2.2. The key issue of learning the model hyperparameters are

reviewed in Section 2.3. Finally, the use of GP in the modelling and control of unknown

nonlinear dynamical systems are discussed in Sections 2.4 and 2.5.

2.1 Data-driven Modelling

Data-driven modelling can be viewed as a regression problem that can be solved by

classical and Bayesian techniques. This section provides an overview of these two types

of techniques.

Consider a dataset D with N collected noisy observations of the inputs and outputs

of a system,

D = {Di|i = 1, · · · , N} = {(xi,yi)|i = 1, · · · , N} (2.1)

where xi ∈ R
m,m ≥ 1 is the m-dimensional input vector, and yi ∈ R

n, n ≥ 1 is the

n-dimensional output vector. The aim of data-driven modelling is to construct a model

of the input-output relationship based on these observations such that output predictions

can be made using this model.

7

Chapter 2. Literature Review

2.1.1 Classical Regression

Parametric regression methods are first considered for this modelling problem. These

approaches are usually based on the assumption that the output yi are generated by

a potential function f(xi;Θ) where Θ denotes a set of parameters. The problem is to

find the set of parameters which perfectly explains the relationships among collected

observations.

One solution refers to minimizing a cost function L(Θ). A common choice of cost

function is the sum of squared errors defined by [30],

L(Θ) =
N∑
i=1

(yi − f(xi;Θ))
2 . (2.2)

This gives us the well known least squares model [31]. The choice of potential function

is problem dependent. It can range from the polynomial functions [32] to ANN [33].

One major problem of least squares is that even though the total error is minimized,

there is no guarantee that the error for any particular input is small. In addition, there is

the potential problem of over-fitting where the obtained model works well for the training

data but generates bad predictions for some other inputs.

An alternative approach is based on a generative noise model given by

yi = f(xi;Θ) + εi (2.3)

where ε is an independently and identically distributed noise, and is usually assumed as

the Gaussian white noises εi ∼ N (0, σ2) with noise variance σ2. The probability density

of over the observations, i.e. the likelihood, can be defined as

p(y|X, Θ, σ2) =
N∏
i=1

p(yi|xi, Θ, σ2) (2.4)

where y denotes the set of observed outputs and X represents the set of observed inputs.

In addition, if this probability distribution is Gaussian, then (2.4) becomes

p(y|X, Θ, σ2) =
N∏
i=1

1√
2πσ2

exp(−(yi − f(xi;Θ))
2

2σ2
). (2.5)

The optimal model parameters are obtained by maximizing this likelihood function. This

8

Chapter 2. Literature Review

leads to an unconstrained optimization problem which is often solved by the gradient

based solutions if the function f in (2.3) is computationally integrable. CG and BFGS

are two popular iterative methods for computing the numerical solution of unconstrained

problems. They both require the computation of a gradient of the function. CG does

not require an estimation of the Hessian matrix but usually converges slower than BFGS.

One major problem is that the models learnt by maximizing the likelihood may suffer

from over-fitting.

2.1.2 Bayesian Regression

Bayesian regression provides an alternative way [17, 32]. Instead of using a single model

as in the classical methods, Bayesian regression considers all possible models by assuming

a distribution over the parameters. In other words, for the prediction each model has a

contribution, the degree of which is weighted by its posterior probability. In this way, the

problem of over-fitting can be alleviated. Moreover, Bayesian regression is able to provide

the full predictive distribution with important information on the amount of confidence

one can have on the model predicted value for each test input.

Assuming there are J possible models {Mj, j = 1, · · · , J} for the given dataset D.
The prior belief on Mj can be expressed as a probability distribution p(Mj). Let Θj be

the finite number of parameters that define the model Mj. Then the prior distribution

of the model parameters can be defined as p(Θj|Mj).

Each model makes predictions about how likely the observed data Di = (xi,yi) is

generated [34]. The probability distribution of predictions for the whole dataset can be

expressed as,

p(D|Mj, Θj) =
N∏
i=1

p(Di|Mj, Θj) (2.6)

Bayesian regression then is carried out in two steps [32]:

• Calculate the probability of each possible model;

• Make a comparison between all possible models.

In the first step, the posterior distribution of the parameters for each model is obtained

9

Chapter 2. Literature Review

from the prior distribution p(Θj|Mj) and the likelihood p(D|Mj, Θj) by using Bayes’ rule,

p(Θj|D,Mj) =
p(Θj|Mj)p(D|Mj, Θ)

p(D|Mj)
(2.7)

Here, p(D|Mj) is the marginal likelihood (or “model evidence”). It is independent of the

parameters and is given by

p(D|Mj) =

∫
p(Θj|Mj)p(D|Mj, Θj)dΘj (2.8)

The posterior distribution in (2.7) contains all the information we know about the param-

eters. Similar to maximizing the likelihood, Maximizing A Posterior (MAP) can produce

a point estimator of parameters but employs an additional prior distribution.

The second step involves ranking the plausibility of each model based on their pos-

terior probabilities [35]. Informally, the marginal likelihood is a likelihood of the model

because its parameters have been marginalized. Thus, the posterior of the model can be

defined by,

p(Mj|D) = p(Mj)p(D|Mj)

p(D) (2.9)

where p(D) can be viewed as a normalising constant. Therefore (2.9) can be rewritten
as

p(Mj|D) = Constant · p(Mj)p(D|Mj). (2.10)

Three key issues should be addressed when Bayesian regression is applied to practical

problems [32, 34]. The first one is related to the ‘evidence’ computation in the first

step. Typically, the integral in (2.8) is computationally intractable. This problem can be

overcome by assuming an analytically tractable Gaussian approximation to the evidence.

Alternatively, Markov Chain Monte Carlo (MCMC) techniques can be used to evaluate

this integral numerically [36]. However, the computational demands of both methods

result are high. The second issue involves the prior. This prior reflects the subjective

knowledge of the system or data to be modelled. Although the principle of Occam’s

Razor [37] tells us that simple models are sufficient for modelling purposes, assign the

appropriate probability distribution to the prior is still an issue to be tackled. The last

problem refers to the choice of candidate model set. Currently, no Bayesian criterion

exists to evaluate whether the choice of models is correct. Furthermore, even though the

appropriate model set is selected, making Bayesian predictions still could be complicated.

This is because nonlinear functions of the parameters and its probabilistic characters often

10

Chapter 2. Literature Review

produce analytically intractable integrals. More details on Bayesian regression can be

found in [35].

2.2 Gaussian Process Models

GP has been proposed to overcome the issues when using Bayesian regression tech-

niques [32]. Instead of assuming a particular parametric form for the latent function in

(2.3) and making inference about parameters Θ, the Gaussian prior is directly imposed on

the function values and inferences take place in the function space. This is much easy to

implement than setting a prior on the latent function. In addition, the parameters Θ are

not necessary any more therefore GP models are usually considered as non-parametric.

In the 1940’s, the Wiener-Kolmogorov prediction theory was presented for the time

series analysis [38]. This is considered the earliest research related to GP models as the

Wiener process is the equivalent to a GP [39]. Another early stage GP model is the

so-called “kriging” which is originally developed in the geostatistics field in the 1970’s.

This model is basically identical to the GP regression model [40], and is often applied to

low-dimensional problems (two or three in most cases) in spatial statistics. In the context

of statistics, the GP models were used to define the prior distributions over functions for

the one-dimensional curve fitting problems in 1978 [41]. However, the potential of GP

was left unnoticed until Bayesian learning methods converged with ANN in [42]. The GP

model was subsequently used as the non-parametric Bayesian method to the regression

problems in [43]. In [44], the GP was compared to other commonly used approaches for

the nonlinear regression problem. From these works, the potential of using GP models

for regression problems have been demonstrated.

2.2.1 Standard Gaussian Process Models

A standard GP is defined as a collection of random variables with a joint Gaussian

distribution among any finite number of them [17].

The dataset becomes D = {(xi, yi)|i = 1, · · · , N} if n = 1. In the standard GP

model, it is usually assumed that yi = f(xi)+ εi where f : R
m → R is a random function

and is also called latent function, εi ∼ N (0, ε2) denotes an independent Gaussian white

noise with zero mean and variance σ2. Therefore, the set of f = {f(x1), · · · , f(xN)}T is

11

Chapter 2. Literature Review

a GP if the following Gaussian distribution over the latent function values satisfies,

p(f |X,K) = 1

L
exp

(
−1
2
(f − μ)TK−1(f − μ)

)
, (2.11)

where L is a normalising constant, X = {x1, · · · ,xN}T denotes a dataset of training

inputs and μ is the mean value of the Gaussian distribution. In addition, K ∈ Rn×n

represents the covariance matrix computed by a covariance function Cov(xi,xj;θ) with

well known hyperparameters θ. One key issue when using GP models is choosing an

appropriate covariance function that expresses our assumptions about the latent function.

This is usually described by the GP prior p(f |θ) over the space of latent function. In [17],
some examples of covariances functions, as well as their influence on the problem of model

learning are presented.

Without loss of generality, a zero mean μ ≡ 0 is usually used in the distribution of

latent functions such that,

f |X,K ∼ N (0,K) (2.12)

For an unobserved input x∗, the joint distribution between the corresponding output

value f ∗ and f is still a GP and can be subsequently obtained by,[
f
f ∗

] ∣∣∣∣X,θ ∼ N
(
0,

[
K Kf ,f∗

Kf∗,f Kf∗,f∗

])
, (2.13)

where Kf ,f∗ = KT
f∗,f = [Cov(x∗,x1), · · · ,Cov(x∗,xN)]

T ∈ R
N×1 denotes the cross-

covariances between observed inputs and the new input, and Kf∗,f∗ = Cov(x∗,x∗) is

the self-covariance of new input.

Let the latent functions be corrupted by independent noises ε = [ε1, · · · , εN]T . The
joint distribution between the observed outputs y = {y1, · · · ,yN}T and predicted output
y∗ at unobserved x∗ is a GP as well and can be defined by,[

y
y∗

] ∣∣∣∣ ∼ N
(
0,

[
K+Σ Ky,y∗

Ky∗,y Ky∗,y∗

])
, (2.14)

where Σ = ε2I.

Through conditioning on observed outputs y, the predictive distribution of y∗ is still

a GP and can be obtained by,

y∗|X,y,θ,Σ ∼ N (
μ(x∗), σ2(x∗)

)
, (2.15)

12

Chapter 2. Literature Review

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y 1

Observations
True function
IGP model mean

2.1.a: y1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y 2

Observations
True function
IGP model mean

2.1.b: y2

Figure 2.1: Example showing the predicted outputs of IGP modelling

where the predictive mean and variance functions are specified by,

μ(x∗) = Kf∗,f (Kf ,f +Σ)
−1y

σ2(x∗) = Kf∗,f∗ −Kf∗,f (Kf ,f +Σ)
−1Kf ,f∗ .

(2.16)

2.2.2 GP models for Multiple Outputs

Most current applications of GP involve the modelling of MISO systems. For MIMO

systems, one can either use a single multiple-output GP model or multiple independent

single-output GP models with one for each output. The latter technique is known in the

literature as the Independent Gaussian Process (IGP) approach [45, 46]. One example of

applying IGP to a multiple response variable problem can be found in [47]. A multiple-

output model is generally more complicated than the IGP, but is able to model the

correlation between multiple outputs. To date, there is no consensus as to which of these

two approaches produces better predictive performances.

While IGP is a simple extension of the GP modelling, there are cases where this

approach is not applicable. Consider a system with single input x and two strongly

coupled outputs y1 and y2, where y1 = −y2. The true values of y1 and y2 are shown as
red dashed lines in Figures 2.1.a and 2.1.b respectively. Suppose the detailed knowledge of

y1 (70 observations shown as red plus signs in Figures 2.1.a) over the interval x ∈ [−1, 0.4]
is known, but a part of the observations for y2 (27 observations shown as red plus signs in

Figures 2.1.b) have been lost for x ∈ (−0.55,−0.05). Through using the IGP approach,

13

Chapter 2. Literature Review

Figure 2.1.a shows that y1 is correctly modelled. However, due to the missing data,

y2 could not be modelled properly as shown in Figure 2.1.b. To address this issue, it

has been proposed to use a GP based multiple-output model in [20]. The commonly

used MIMO GP models are presented in the following paragraphs.

Linear Model of Coregionalization

In geostatistics, the standard GP model has been extended to multiple-task [48] and

multiple-output problems [49]. This technique is known as the Linear Model of Core-

gionalization (LMC). In the context of LMC, each output function is expressed as the

mixture of a number of different processes. Specifically, for a system with m outputs, the

dth output function is often synthesized from Q groups of underlying functions uiq(x) [50],

fd(x) =

Q∑
q=1

Rq∑
i=1

aid,qu
i
q(x) (2.17)

where x ∈ R
n denotes the input vector and d = 1, · · · ,m. Within each group, the

underlying functions share the same covariance function, but are independent. Here the

covariance typically is defined by

Cov[f(x), f(x+ τ)] = K(τ) =

Q∑
q=1

Aqkq(τ), (2.18)

where f(x) = [f1(x), · · · , fm(x)]T . In addition, {Aq}Qq=1 ∈ R
D×D are known as the

coregionalization matrices that capture the correlations across output functions, and

kq(τ) defines a covariance that captures the correlation between inputs in the q
th group

of output functions.

LMC models correlate the outputs based on a linear weighted sum of independent

processes. This can be viewed as an ‘instantaneous mixing’ technique [51, 52]. It has

two main limitations. The first one is that the coregionalization matrices are difficult to

estimate [53]. The second one is that ’instantaneous mixing’ is not often applicable in

the engineering context [51] where system outputs are likely the results of convolution.

14

Chapter 2. Literature Review

u1(x) u2(x) · · · uq(x) wd(x)

�Gd,1(x) �Gd,2(x) · · · �Gd,q(x) �Hd(x)

∑ ∑ ∑

f1(x) f2(x) fm(x)

d = 1 d = 2 d = M

Figure 2.2: Structure of a Dependent Gaussian Process Model

Dependent Gaussian Processes

The issues of LMC can be overcome by constructing the covariances using Convolution

Process (CP). This idea was first suggested in [54] and subsequently explored in [55].

In [18], CP method has been used to construct the covariance functions. Since linearly

filtering a GP will produce the GP [56] again, a standard multiple-input GP can be

obtained through a MISO linear filter with Gaussian white noise as input. This method

is extended to MIMO systems with multiple dependent Gaussian processes. As a result,

the DGP is proposed in [18] to cope with MIMO problems directly, where DGP models

are produced through a convolution between Gaussian white noise and smoothing kernels.

Consider a set of m output functions {fd(x)}md=1. Each fd(x) can be obtained by a

sum of two convolution integrals,

fd(x) =

Q∑
q=1

∫
X
Gd,q(x− τ)uq(τ)dτ +

∫
X
Hd(x− τ)wd(τ)dτ (2.19)

where Gd,q(x) and Hd(x) are two smoothing kernels. The latent process wd(x) is a

Gaussian noise and only affects the output fd(x). On the other hand, {uq(x)}Qq=1 is a

set of Gaussian noise affecting all outputs. In the DGP, all Gaussian noises are assumed

to be independent and with zero mean and unit variance, i.e. wd(x), uq(x) ∼ N (0, 1).

Figure 2.2 depicts the structure of a DGP model.

15

Chapter 2. Literature Review

Then, the cross-covariance between fd(x) and fd′(x
′) can be obtained by,

Cov[fd(x), fd′(x
′)] = E

[(
Q∑
q=1

∫
X
Gd,q(x− τ)uq(τ)dτ +

∫
X
Hd(x− τ)wd(τ)dτ

)
(

Q∑
q=1

∫
X
Gd′,q(x

′ − τ ′)uq(τ ′)dτ ′ +
∫
X
Hd′(x

′ − τ ′)wd′(τ ′)dτ ′
)]

=

∫∫
X

Q∑
q=1

Gd,q(x− τ)Gd′,q(x
′ − τ ′)E[uq(τ), uq(τ ′)]dτ ′dτ

+

∫∫
X
Hd(x− τ)H ′

d(x
′ − τ ′)E[wq(τ), wq(τ ′)]dτ ′dτ

(2.20)

In addition, based on the assumption of independent identical distribution with zero

mean and unit variance, it can be known that,

E [wq(τ), wq(τ
′)] = E [uq(τ), uq(τ

′)] = 1 (2.21)

and

E

[
Q∑
q=1

∫
X
Gd,q(x− τ)uq(τ)dτ

∫
X
Hd′(x

′ − τ ′)wd′(τ ′)dτ ′
]
= 0 (2.22)

Thus, (2.20) becomes,

Cov[fd(x), fd′(x
′)] =

Q∑
q=1

∫
X
Gd,q(x− τ)Gd′,q(x

′ − τ)dτ

+

∫
X
Hd(x− τ)H ′

d(x
′ − τ)dτ

=Covu[fd(x), fd′(x
′)] + Covw[fd(x), fd′(x

′)]δd,d′

(2.23)

where δd,d′ is the Kronecker delta function with value 1 when d = d′ and 0 otherwise. The

key to compute the covariance function in the DGP model is specifying the smoothing

kernels. Gaussian kernels have been used in [18]. The results show that DGP performs

great modelling ability for MIMO problem with strongly or partially correlated out-

puts. Recently, DGP has been applied to identify the Unmanned Aerial Vehicle (UAV)

model [57, 58].

One key benefit of using DGP models is their predictive mean and variance functions

remain same formulations to (2.16). More details about predictions of DGP models can

be found in [30].

16

Chapter 2. Literature Review

Convolved Gaussian Process Models

DGP can be further generalized by allowing latent processes other than Gaussian white

noise. This generalization leads to the CGP model [59] that allows us to handle wider

range of real problems.

Consider a system with n inputs x ∈ R
n and m outputs y(x) ∈ R

m again. In

the CGP, each output yd(x) is modelled by,

yd(x) = fd(x) + εd(x) (2.24)

where d = 1, 2, . . . ,m and εd(x) denotes an independent Gaussian white noise. The

function fd(x) typically is defined by a linear convolution of a smoothing kernel Hd(x)

and a latent function u(x),

fd(x) =

∫
Hd(x− τ)u(τ)dτ (2.25)

The correlation between outputs is derived from the latent function u(x) which has effects

on all output functions. This latent function can be any appropriate random processes.

If a Gaussian white noise is used, then resulting in a DGP model. In the CGP, a wide

range of latent functions are proposed to match the modelling requirements for different

physical or dynamical systems [59].

In addition, the CGP models allow using more than one type of latent function.

Assuming Q groups of latent functions are considered, where for the qth group, it has Rq

smoothing kernels. Thus the dth output function can be rewritten by,

fd(x) =

Q∑
q=1

Rq∑
k=1

∫
Hk
d,q(x− τ)ukq(τ)dτ (2.26)

Then, the covariance between different outputs yd(x) and yd′(x
′) can be obtained by,

Kyd,yd′ (x,x
′) =Cov [yd(x),yd′(x′)]

=Cov [fd(x), fd′(x
′)] + Cov [εd(x), εd′(x

′)] δd,d′
(2.27)

where δd,d′ is a Kronecker delta function thus Cov [εd(x), εd′(x
′)] δd,d′ will lead to a diagonal

matrix of noise variance
{
σ2
d

}m
d=1

if it is assumed that εd(x) ∼ N (0, σ2
d), and the cross-

17

Chapter 2. Literature Review

covariance between fd(x) and fd′(x
′) is given by,

Kfd,fd′ (x,x
′) = Cov [fd(x), fd′(x

′)]

= E

[
Q∑
q=1

Rq∑
k=1

∫
Hk
d,q(x− τ)ukq(τ)dτ

Q∑
q=1

Rq∑
k=1

∫
Hk
d′,q(x

′ − τ ′)ukq(τ
′)dτ ′

]

=

Q∑
q=1

Rq∑
k=1

kq(τ, τ
′)
∫
Hk
d,q(x− τ)Hk

d′,q(x
′ − τ)dτ

(2.28)

Data-driven modelling using CGP basically involves obtaining the appropriate smoothing

kernels and latent functions that reflect the covariance between outputs.

As given in (2.26), the output function is a linear combination of independent random

functions. Thus, if these functions are Gaussian processes, then fd(x) will also be a

Gaussian process. In this case, the smoothing kernels can be expressed by,

Hk
d,q(γ) =

νkd,q
∣∣Pk

d,q

∣∣1/2
(2π)M/2

exp

[
−1
2
(γ)TPk

d,q(γ)

]
(2.29)

where νkd,q is a length-scale coefficient, P
k
d,q is an n × n precision matrix of the smooth-

ing kernel. To simplify the model further, it is assumed that the covariances of latent

functions kq(η) in every group are all same Gaussian,

kq(η) =
υq |Pq|1/2
(2π)M/2

exp

[
−1
2
(η)TPq(η)

]
(2.30)

where υq is the length-scale coefficient and Pq is another n× n precision matrix.

To simplify the discussion again, it is assumed that Rq = 1 for all Q groups of latent

functions. In addition, the precision matrices of the smoothing kernels are assumed to

be the same for each group of latent functions. As a result, given the smoothing kernel

(2.29) and latent function covariance (2.30), the covariance can be obtained by,

Cov [fd(x), fd′(x
′)] =

Q∑
q=1

νd,qνd′,qυq

(2π)M/2 |P|1/2
exp

[
−1
2
(x− x′)TP−1(x− x′)

]
(2.31)

where P = P−1
d +P−1

d′ +P
−1
q . Note that this multiple-output covariance function main-

tains a Gaussian form, i.e. Kfd,fd′ (x,x
′) ∼ N (x− x′|0,P).

Then similar to standard GP models, given a set of observations
{
xj,yj

}Jd
j=1

, where

18

Chapter 2. Literature Review

m∑
d=1

Jd = N , a Gaussian distribution can be defined on the output functions by,

y(x) ∼ N (μ(x),Ky,y(x,x
′)) (2.32)

where the output vector y(x) is given by,

y(x) = [y1(x), ...,ym(x)]
T (2.33)

with the entries,

yd(x) =
[
yd(x

1), fd(x
2), ..., fd(x

Jd)
]T

(2.34)

Without loss of generality, zero means are used. In addition, the covariance matrix

Ky,y(x,x
′) ∈ R

N×N can be obtained by using (2.28) and (2.31). Usually, the compu-

tation of such a covariance matrix is computationally expensive. Thus, some sparse

approximations have been proposed to reduce the complexities of CGP [19]. Then, the

marginal likelihood can be defined by,

p(y|X,θ) ∼ N (y|0,Ky,y) (2.35)

The joint distribution of observed y and the predicted outputs y∗ = {y∗1, · · · , y∗M} at new
input x∗ is thus still a Gaussian and is given by,[

y
y∗

]
∼ N

(
0,

Ky,y Kf ,f∗

Kf∗,f Kf∗,f∗

)
(2.36)

Finally, similar to standard GP models again, the predictive distribution is a Gaussian,

y∗|X,y,θ,x∗ ∼ N (μ(x∗), σ2(x∗)) (2.37)

where the mean μ(x∗) and variance σ2(x∗) functions are computed by,

μ(x∗) = Kf∗,fK
−1
y,yy (2.38a)

σ2(x∗) = Kf∗,f∗ −Kf∗,fK
−1
y,yKf ,f∗ (2.38b)

2.3 Hyperparameter Learning

Performing predictions using (2.16) for standard GP models, or using (2.38) for CGP

models, the covariance matrix K. This matrix is specified by a set of hyperparameters

19

Chapter 2. Literature Review

θ. They are usually obtained by maximizing the log of marginal likelihood function.

In GP models, the marginal likelihood is equal to the integral over a product of the

likelihood function and GP prior over the latent functions, both of which are Gaussian.

Thus, the marginal likelihood is also Gaussian and defined by,

p(y|X,θ) =
∫
p(y|f ,X,θ)p(f |θ)df

=
1

(2π)
N
2 |Ky,y| 12

exp

(
−1
2
yTK−1

y,yy

) (2.39)

This marginal likelihood can be viewed as the likelihood of hyperparameters corrupted by

noise so that we simply call likelihood function. A good point estimate θ̂ of hyperparam-

eters can be subsequently obtained by maximizing this likelihood function. In practice,

we usually estimate the hyperparameters by maximizing the log likelihood function due

to its less computation complexities. The corresponding optimization problem can be

subsequently defined as,

θ̂ = argmax
θ

log p(y|X,θ) (2.40)

where,

log p(y|X,θ) = −1
2
yTK−1

y,yy − 1

2
log |Ky,y| − N

2
log 2π (2.41)

The unconstrained optimization problem (2.40) is not easy to solve due to it is typi-

cally nonlinear and non-convex. However, in GP models, the derivatives of log likelihood

function with respective to the hyperparameter θ are mathematically analytical and can

be obtained by,

∂

∂θl
log p(y|X,θ) = −1

2
yTK−1

y,y

∂K

∂θl
K−1

y,yy − 1

2
trace(K−1

y,y

∂K

∂θl
) (2.42)

By using this gradient, problem (2.40) can be solved by using a BFGS and a CG al-

gorithm [17]. However, the performance of gradient-based method is very sensitive to

initial values. Therefore, these algorithms are often restarted multiple times with differ-

ent initializations. Recently, PSO based solutions have been proposed in [28, 29] as an

alternative method to solve the problem. It generally has better global search ability due

to the use of a number of different particles. Computational demand is reduced because

it does not need to compute the gradient.

20

Chapter 2. Literature Review

2.4 Applications of GP Models

GP model has become more popular in the past decade with the development of Machine

learning (ML) techniques [60–62]. In terms of unknown systems, the use of GP model

mainly lies in the modelling and control of unknown nonlinear systems.

2.4.1 GP Modelling of Unknown Nonlinear System

As a non-parametric Bayesian modelling technique, the GP model has been considered as

an alternative approach to the modelling of nonlinear systems that are usually represented

by using the parametric methods, such as ANN and FM. In [63, 64], the GP model is

used for the unknown nonlinear dynamical systems due to the quality of learnt model

can be evaluated by using the GP variance naturally obtained during the modelling

process. The so called Gaussian Latent Variable Model (GP-LVM) based on the GP

models and Principal Component Analysis (PCA) technique is proposed in [65]. The use

of the GP-LVM model allows the reduction of problem dimensionality by projecting the

observed data space onto a latent space with lower dimension. The Gaussian Process

Dynamical Model (GPDM) model proposed in [66] is conceptually similar to the GP-LVM

but is able to accurately model the nonlinear system with limited observations. More

Recently, a moving-window technique is incorporated into the GP models to handle the

time-varying dynamical system in [67]. The theoretical researches on the use of GP

models in the different nonlinear modelling problems can be found in [68–71].

The GP models has been used in the modelling of different industrial systems, such as

the chemical and material processes [72, 73], the hydraulic system [63, 64], the wastewater

treatment process [74], the concrete properties [75] and the wind turbine [76]. In addition,

the GP models are also employed to identify human motion [77, 78] as well as robotic

systems [79]. In the context of process controls, the GP models have been used for the

process monitoring, fault diagnosis and soft sensors [67, 80–84].

21

Chapter 2. Literature Review

2.5 GP Applications on Control

2.5.1 Inverse Dynamics Control

Inverse dynamics control (Inverse Dynamics Control (IDC)) is a control technique based

on an inverse model of the nonlinear system. The inverse model, obtained by a model

inversion of the nonlinear process, is directly utilized as the controller. Thus the expected

output is treated as an input variable in the model, and the corresponding control action

is predicted.

The GP models have been used to offline learn the inverse dynamic model of a robot

system in [85]. The learnt model is subsequently applied into the inverse dynamics control

of robotics in [86, 87]. In addition, through combining standard GP model and locally

weighted projection regression techniques, the Local Gaussian Process (LGP) model is

proposed in [88] to handle the online learning and control problems.

2.5.2 Adaptive Control

Adaptive control involves continuously adjusting the controller on-line to maintain a

desired level of control performance. It is applicable when the parameters of the plant

dynamic model are unknown or time-varying. Adaptive control can either be open-loop

and closed-loop.

The GP model was first introduced into the adaptive control in [89] where linear and

nonlinear systems are described by GP models. In addition, through considering GP

variances in the cost function, obtained adaptive controllers are able to produce control

actions with the robustness against output variances. This work is further improved

in [90] where the multiple-step prediction technique proposed in [91] is used so that the

issue of uncertainty propagation can be addressed. Another GP based adaptive controller

is proposed in [92] based on the Generalized Minimum Variance (GMV) control strategy.

In these works, different cost functions are used to address the issue of consideration

of GP variances.

In [29], an adaptive controller is proposed based on the evolving GP models. Evolv-

ing GP refers to recursively adapting the structure of the GP model and its hyperpa-

rameters values based on some kind of evolution. The proposed technique is different

from abovementioned adaptive controllers since both the model structure and model pa-

22

Chapter 2. Literature Review

rameters are updated from measured data [29]. This technique is subsequently improved

with faster on-line learning ability and is applied to the problem of predicting ozone

concentration in [93].

2.5.3 Model Predictive Control

MPC is one of the most commonly used control techniques for both linear and nonlinear

systems with constraints [94]. Examples of MPC algorithms that have been developed

and used in practice include Dynamic Matrix Control (DMC) [95], Predictive Functional

Control (PFC) [96] and Generalized Predictive Control (GPC) [97].

MPC control of dynamical nonlinear systems represented by GP models have been

studied for the first time in [98]. The proposed algorithm is subsequently applied to a

pH neutralization process [21], and a gas-liquid separation plant [22]. The cost function

used in these works are in the form:

J (xk) =
H∑
i=1

{
(xk+i − rk+i)

T Q (xk+i − rk+i)
}

=
H∑
i=1

{
(μk+i − rk+i)

T Q (μk+i − rk+i)
}
= H(μk)

(2.43)

where x and r represents vectors of states and target values, H is the prediction horizon

and Q is a positive definite weighting matrix. In this case, the states are simply the

predicted GP mean values μ. A hard constraint on the GP variances is used to address

the issue of model uncertainty.

In [99], a more general formulation of GP based MPC problem is given. It is based

on the following cost function that includes control inputs u as follows.

J (xk,uk−1) =
H∑
i=1

{
(xk+i − rk+i)

T Q (xk+i − rk+i) + u
T
k+i−1Ruk+i−1

}

=
H∑
i=1

{
(μk+i − rk+i)

T Q (μk+i − rk+i) + u
T
k+i−1Ruk+i−1

}
=H(μk,uk−1)

(2.44)

whereR denotes another positive definite weighting matrix. The states are again replaced

by the GP means. However, model uncertainty in this method is addressed by treating

23

Chapter 2. Literature Review

GP variances Σ as the slack variables of GP means in the form of constraints μk+i −
2Σk+i ≥ xmin and μk+i + 2Σk+i ≤ xmax. The optimization problem are solved by a

multi-parametric programming technique. The solutions are represented as an explicit

look-up table of control inputs. However, the efficiency of proposed multi-parametric

based approach can only be guaranteed for small size problems [100], typically 5 to

10 variables including both inputs and states/outputs, and the control and prediction

horizons under 5. In addition, it also could be computationally demanding to handle the

optimization problem with a more complicated cost function compared to (2.44), such

as introducing a penalty term on GP variances in (2.44).

GP variances in the above formulations are not included in the cost function but form

part of the constraints. GP variance can be directly incorporated into the cost function

if the expectation of (2.44) is used as the cost function instead [24]. This is because

E [J (xk,uk−1)]

=E

[
H∑
i=1

{
(xk+i − rk+i)

T Q (xk+i − rk+i) + u
T
k+i−1Ruk+i−1

}]

=
H∑
i=1

{
(μk+i − rk+i)

T Q (μk+i − rk+i) + u
T
k+i−1Ruk+i−1 + trace(QΣk+i)

}
=H(μk,Σk,uk−1)

(2.45)

where trace(·) represents the trace of a matrix. Recently, this technique has been imple-
mented in [25, 101] for unconstrained GP based MPC problems. However, its use in the

constrained GP based MPC problem has still not been investigated.

There has not been much discussion on the issue of stability in the published works on

GP based MPC. In [27], a penalty term on the terminal state to guarantee stability has

been suggested but there is no stability analysis given. If stability is viewed as robustness

against GP variances, then an Linear Matrix Inequality (LMI) based technique has been

used for unconstrained control problems [101]. For the constrained case, a robust GP

based MPC algorithm has recently been proposed in [102]. However, this algorithm

is based on worst-case analysis. Hence, the obtained control actions are conservative.

Furthermore, uncertainty is propagated in this work by using the double-seasonal Holt-

Winters technique [103]. This is computationally demanding compared to the approaches

in [27, 98] where the uncertainty is naturally propagated as part of the multiple step

prediction process.

24

Chapter 3

Hybrid PSO for Hyperparameters
Learning

The key issue of using the GP model is accurately learning the hyperparameters. We

propose three enhanced PSO algorithms to address this issue when using the CGP model

in Section 3.2. In addition, we also propose using the MSE of outputs as the fitness

function when the quality of obtained model is concerned. The simulation results in

Section 3.3 demonstrate the effectiveness of CGP based modelling of unknown systems, as

well as the optimization performance of proposed PSO algorithms in the hyperparameter

learning problem.

All simulations are conducted in the Matlab environment using the “cgpModel” tool-

box we developed. It contains the implementation of the modelling and inference algo-

rithms by using the CGP models proposed by M.A Alvarez [59]. Modelling, learning and

prediction are performed at the high level by the “cgpModelCreate”, “cgpModelLearn”

and “cgpModelComputeMeanVar” functions. In addition to the CG, the proposed PSO

learning algorithms are also included as part of the toolbox. This allows users to easily

compare the performance of these two methods. The users also have a choice of two

different cost functions for the PSO algorithm. One is the commonly used log-likelihood

function and the other is “squared model error” function. Extensibility of this toolbox

is ensured by the modular design. Additions to the current function library of learning

methods, covariance functions and cost functions can easily be made.

25

Chapter 3. Hybrid PSO for Hyperparameters Learning

3.1 Log-Likelihood and MSE Fitness Functions

Similar to the hyperparameters learning of standard GP models discussed in Section 2.3,

the hyperparamters of a CGP can be obtained by maximizing the following LL function:

log p(y|X, θ) = −1
2
yTK−1

y,yy − 1

2
log |Ky,y| − N

2
log 2π (3.1)

where the covariance matrix Ky,y is defined by (2.31). In practice, we alternatively solve

the problem of minimizing the Negative value of Log-Likelihood (NLL) since there are

many efficient optimization algorithms available for minimization.

The minimization of the NLL again leads to an unconstrained optimization problem

that can be solved by using CG techniques. However, CG algorithms often get stuck

at a local optima. Therefore, one has to restart the algorithm a number of times with

different initial values. Alternatively, the standard PSO technique can been employed

[20]. However, the standard PSO algorithms typically converge very slowly.

In addition to the above problems, there is also the choice of objective function.

When using PSO algorithms for learning hyperparameter, equation (3.1) is the natural

choice as the objective function. However, there are some issues involved which we shall

illustrate with the modelling of a single output nonlinear dynamic system described by

the following difference equation:

y(k) =0.893y(k − 1) + 0.037y2(k − 1)− 0.05y(k − 2)

+ 0.157u(k − 1)− 0.05u(k − 1)y(k − 1)
(3.2)

where u(k) is the input and y(k) is the output at time instant k. 1000 uniformly dis-

tributed input values are randomly generated within the range of (−2, 4) and their corre-
sponding outputs are computed. From these input-output data, 200 are randomly chosen

for training the model. The hyperparameters of the CGP model are learned by minimiz-

ing the NLL function. To evaluate the quality of the resulting CGP model , the MSE

value of 50 test points are computed by

MSE =
1

N

N∑
i=1

(yi − ŷi(θ))
2 (3.3)

where N is the number of test data, yi are test outputs, and ŷi are corresponding mean

values obtained by using (2.38a) given the hyperparameters θ.

26

Chapter 3. Hybrid PSO for Hyperparameters Learning

Table 3.1: NLL and MSE values of two CGP models of system described by (3.2).

Model 1 Model 2
NLL ≈ 51 ≈ 242269
MSE 0.5313 0.0101

Table 3.1 shows two different CGP models that results from limiting the search range

of the hyperparameters to [0, 100] for Model 1 and [0, 1] for Model 2. Based the MSE

values, it is clear that Model 2 is able to predict the outputs more accurately than Model

1. However, the NLL value of Model 1 is much smaller than Model 2. If the NLL function

is the objective function for minimization, one may conclude that Model 1 is the better

model. Thus one cannot use the NLL (and hence LL) values to accurately gauge the

quality of intermediate models obtained during the optimization process.

We therefore propose to minimize the MSE function (3.3) to learn CGP’s hyperpa-

rameters. The optimal values of the hyperparameters are therefore obtained by

θ̂ = argmin
θ

1

N

N∑
i=1

(yi − ŷi(θ))
2 (3.4)

In addition, the following derivatives of MSE of outputs w.r.t. the hyperparameters can

be used to accelerate the optimization process.

∂

∂θl
MSE = − 2

N

N∑
i=1

{
(yi − ŷi(θ))

∂ŷi(θ)

∂θ

}
(3.5)

with
∂ŷi(θ)

∂θ
=
∂Kf∗,f

∂θ
K−1

y,yy −Kf∗,fK
−1
y,y

∂Ky,y

∂θ
K−1

y,yy (3.6)

where the computation of
∂Kf∗,f

∂θ
and

∂Ky,y

∂θ
can be found in [17, 104]. This technique is

in fact widely known as the least-square approach in the literature. In addition, from the

viewpoint of non-Bayesian learning, minimizing the MSE is approximately equivalent to

maximizing the LL. The proof of equivalence between these two learning strategies can

be found in [105].

27

Chapter 3. Hybrid PSO for Hyperparameters Learning

1 Initialization
PSO parameters: Np, c1, c2, λ1, λ2, ωstart, ωend, k, Tmax and ξ
Randomly generated θ;

2 while t < Tmax do
3 if f(G) ≤ ξ then
4 End;
5 else
6 for i = 1 to Np do
7 for d = 1 to D do
8 Update vdi (t) by using (3.7);
9 Update xdi (t) by using (3.9);

10 end
11 Update Pi and V

pbest
i (t) by using (3.10);

12 Update G and V gbest(t) by using (3.11);
13 end
14 end
15 s t = t+ 1;
16 end
Output: Optimized particle θopt.

Algorithm 1: Standard PSO based Hyperparameter Learning

3.2 Enhanced PSOs for Hyperparameter Learning

PSO is an evolutionary computation technique inspired by the social behaviour of or-

ganisms [106]. Many particles are initialized simultaneously and each one represents a

solution to the problem. Associated with each particle is its position in the solution space

and its velocity with which it is moved to a new position. A fitness function is used to

evaluate each particle and only particles that are fit enough survive in the competition.

After some iterations, the particles would have explored the solution space sufficiently to

arrive at the optimal or near optimal solution.

In [20, 28, 29], the standard PSO algorithm has been proven superior to gradient

based CG and BFGS approaches in terms of accuracy and efficiency for the optimization

problems (2.40) and (3.4). However, poor initializations can lead to poor global search

ability, and they exhibit slow convergence due to poor local search ability. We shall

first outline the “standard” PSO algorithm for the hyperparameter learning of CGP

models. Subsequently, an enhanced algorithm that makes use of multi-start technique is

described, followed by the introduction of two other new enhancements.

28

Chapter 3. Hybrid PSO for Hyperparameters Learning

3.2.1 Standard PSO

Let there be a population ofNp particles, each of which, denoted by xi = [x1i , · · · , xDi]Ti=1,··· ,Np
∈

R
D, represents a potential solution to the problem (2.40) or (3.4). Each particle also

records its best position as Pi = [p1i , · · · , pDi]T and its best fitness value V pbest
i = f(Pi),

where f(·) denotes the fitness function and could be (3.1) or (3.3). In addition, the best
position of all Np particles is denoted by G = [g1, · · · , gD]T and the corresponding best

fitness value is denoted by V gbest = f(G). In the iteration t + 1, the velocity of ith

particle, given by vi = [v1i , · · · , vDi]T , along dth dimension is updated according to the

following rule,

vdi (t+ 1) = ω(t)vdi (t) + c1λ1
(
pdi (t)− xdi (t)

)
+ c2λ1

(
gd(t)− xdi (t)

)
(3.7)

where c1 and c2 are two acceleration factors, λ1 and λ2 are two random values between

[0, 1], ω(t) represents an inertia factor.

In general, a PSO algorithm consists of two search phases, known as “exploration”

and “exploitation” respectively. They are governed by the inertia factor ω(t). The use

of a larger value of ω(t) allows the particle to explore larger areas of the search space

during the exploration phase. Meanwhile, a smaller value of ω(t) restricts the particle

to a smaller region of the search space and allows the particle to converge to a local

optimum in the exploitation phase. Thus, the inertia factor is usually reduced with time

step. A commonly used ω(t) is defined by,

ω(t) = ωend + (ωstart − ωend) exp(−k × (
t

Tmax

)) (3.8)

where ωstart and ωend are the pre-determined start and final values respectively, Tmax

denotes the maximum number of iterations. and the rate of decrease is governed by the

constant k.

The new position of a particle can subsequently be obtained by,

xdi (t+ 1) = xdi (t) + vdi (t+ 1) (3.9)

For the minimization problem (3.4), the Pi and V pbest
i at t + 1 iteration are updated

29

Chapter 3. Hybrid PSO for Hyperparameters Learning

according to the following rule,

Pi(t+ 1) =

{
xi(t+ 1) f(xi(t+ 1)) ≤ f(Pi(t))
Pi(t) f(xi(t+ 1)) > f(Pi(t))

V pbest
i (t+ 1) =f(Pi(t+ 1))

(3.10)

In addition, the G and V gbest at t+ 1 iteration are updated by,

G(t+ 1) = argmin

{
f(P1(t+ 1)), · · · , f(PNp(t+ 1)), f(G(t))

}
V gbest(t+ 1) = f(G(t+ 1))

(3.11)

We can also use the rules (3.10) and (3.11) when the maximization problem (2.40) be-

comes the minimizing the negative of LL function (3.1).

For our hyperparameter learning problem, each particle is defined by

θ = {θK1, ...,θKM ,θL1, ...,θLQ} (3.12)

where θKd = {νd1, ..., νdQ,Pd}d=1,··· ,M represents the hyperparameters of smoothing ker-

nels (2.29), and θLq = {υq,Pq}q=1,...,Q are the hyperparameters of latent functions (2.30).

The algorithm of standard PSO based hyperparameter learning is presented in Algo-

rithm 1.

3.2.2 Multi-Start PSO

In the “exploration” stage of the optimization process, we want the particles to explore

as much of the search space as possible. This can be achieved by setting the inertia

factor ω(t) to a suitably large value which in turn is determined by ωstart and ωend

in (3.8). However, suitable values for these two constants are quite specific to each

problem. Another way to achieve this objective is to diversify the swarm by introducing

new particles. With the multi-start PSO proposed here, all particles will be reinitialized

if the global best position G remains unchanged or slightly changed for a given number

of iterations NG. One may question whether the potentials of old particles should be

exploited. However, in the “exploration” stage, global search is more important than

local ones. It has also been proposed that only those particles that are trapped in a local

optimum should be reinitialized [107]. But this approach requires checking the changes

of multiple f(Pi) which is time-consuming. Our algorithm is therefore simpler because

30

Chapter 3. Hybrid PSO for Hyperparameters Learning

1 Initialization
PSO parameters: Np, c1, c2, λ1, λ2, ωstart, ωend, k, Tmax and ξ
Randomly generated θ;
Multi-start PSO parameters: η,NG, Nη = 0;

2 while t < Tmax do
3 if Nη = NG then
4 Randomly regenerated θ;
5 Nη = 0;
6 else
7 if f(G) ≤ ξ then
8 End;
9 else

10 for i = 1 to Np do
11 for d = 1 to D do
12 Update vdi (t) by using (3.7);
13 Update xdi (t) by using (3.9);
14 end
15 Update Pi and V

pbest
i (t) by using (3.10);

16 Update G and V gbest(t) by using (3.11);
17 end
18 if ‖f(G(t))− f(G(t− 1))‖ ≤ η then
19 Nη = Nη + 1;
20 else
21 Nη = 0;
22 end
23 end
24 end
25 t = t+ 1;
26 end
Output: Optimized particle θopt.

Algorithm 2: Multi-Start PSO based Hyperparameter Learning

only the change of f(G) need to be checked. It is described in Algorithm 2.

3.2.3 Gradient-based PSO

Standard PSO also suffers from slow convergence during the “exploitation” phase. This

issue can be solved through using the gradient/derivative information especially when

it approaches to the global or local optima. In this section, a gradient-based PSO is

proposed for the hyperparameters learning problem by combining the standard PSO

and CG algorithm. In particular, the current global best position G will be exploited

by solving the problem 2.40) or (3.4) by using the CG algorithm. The obtained solution

is subsequently used to replace the current global position in the PSO algorithm if it

produces a better fitness value. Compared with the existing work in [108] where all

particles are exploited by using a gradient-based method, the proposed algorithm only

31

Chapter 3. Hybrid PSO for Hyperparameters Learning

1 Initialization
PSO parameters: Np, c1, c2, λ1, λ2, ωstart, ωend, k, Tmax and ξ
Randomly generated θ;
Gradient-based PSO parameters: η,NG, Nη = 0;

2 while t < Tmax do
3 if Nη = NG then
4 Initializing CG parameters, θ0 = G;
5 Solving the problem (2.40) or (3.4) to obtain θ∗;
6 if f(θ∗) ≤ f(G(t)) then
7 G(t+ 1) = θ∗;
8 else
9 G(t+ 1) = G(t);

10 end
11 Nη = 0;
12 else
13 if f(G) ≤ ξ then
14 End;
15 else
16 for i = 1 to Np do
17 for d = 1 to D do
18 Update vdi (t) by using (3.7);
19 Update xdi (t) by using (3.9);
20 end
21 Update Pi and V

pbest
i (t) by using (3.10);

22 Update G and V gbest(t) by using (3.11);
23 end
24 if ‖f(G(t))− f(G(t− 1))‖ ≤ η then
25 Nη = Nη + 1;
26 else
27 Nη = 0;
28 end
29 end
30 end
31 t = t+ 1;
32 end
Output: Optimized particle θopt.

Algorithm 3: Gradient-based PSO based Hyperparameter Learning

conducts gradient-based search on the current global best position if its fitness value

remains unchanged or slightly changed for a specified number of iterations NG. The

computational burden of using proposed algorithm is essentially reduced. The gradient

based PSO for the hyperparameter learning of CGP models is given in Algorithm 3.

3.2.4 Hybrid PSO

The multi-start method in Section 3.2.2 and the gradient-based method in Section 3.2.3

can be combined in a single PSO algorithm so that both the “exploration” and the “ex-

32

Chapter 3. Hybrid PSO for Hyperparameters Learning

1 Initialization
PSO parameters: Np, c1, c2, λ1, λ2, ωstart, ωend, k, Tmax and ξ
Randomly generated θ;
Hybrid PSO parameters: τ, η,NG, Nη = 0;

2 while t < Tmax do
3 if Nη = NG then
4 if t ≤ τ × Tmax then
5 Randomly regenerated θ;
6 else
7 Initializing CG parameters, θ0 = G;
8 Solving the problem (2.40) or (3.4) to obtain θ∗;
9 if f(θ∗) ≤ f(G(t)) then

10 G(t+ 1) = θ∗;
11 else
12 G(t+ 1) = G(t);
13 end
14 end
15 Nη = 0;
16 else
17 if f(G) ≤ ξ then
18 End;
19 else
20 for i = 1 to Np do
21 for d = 1 to D do
22 Update vdi (t) by using (3.7);
23 Update xdi (t) by using (3.9);
24 end
25 Update Pi and V

pbest
i (t) by using (3.10);

26 Update G and V gbest(t) by using (3.11);
27 end
28 if ‖f(G(t))− f(G(t− 1))‖ ≤ η then
29 Nη = Nη + 1;
30 else
31 Nη = 0;
32 end
33 end
34 end
35 t = t+ 1;
36 end
Output: Optimized particle θopt.

Algorithm 4: Hybrid PSO based Hyperparameter Learning

ploitation” phases of the optimization process are enhanced. This leads to the proposed

hybrid PSO algorithm. In particular, the multi-start technique is first used such that

the search space can be well covered. When the number of iterations NG reaches a given

proportion η of maximum iteration number, the optimization process is considered to

have approached near global or local optima. The algorithm subsequently switches to

the use of gradient-based technique. This allows a faster convergence rate due to the

nature of using gradient-based solution compared to the use of rules (3.7) and (3.9). The

33

Chapter 3. Hybrid PSO for Hyperparameters Learning

Table 3.2: Parameters used in the simulations

Symbol Description Quantity
Np PSO population 20
Tmax Maximum Iterations 500
c1,c2 Acceleration Factors 1.5
ωstart Start Inertial Factor 0.4
ωend End Inertial Factor 0.9
k Shape Control Factor 0.8

CG Restarts Restart Times 20× 500
‖Δξ‖ Minimum Fitness Variation 10−5

νd,i, υq
αi, βj

Coefficients Search Range
Pd, Pq Elements Search Range

[0, 100] for LTV
[0, 100] for NLTV with “Step”
[0, 1] for NLTV with “Curve”

proposed hybrid PSO is conceptually simple and allows to adjust the proportion η to suit

the problem. The use of hybrid PSO in the problem of CGP models’ hyperparameter

learning is given in Algorithm 4.

3.3 Simulation Results

The optimization performances of proposed PSO based algorithms for CGP hyperpa-

rameters learning are demonstrated in the modelling of non-trivial MISO and MIMO

systems. The proposed PSOs are compared with the CG algorithm. In addition, both

the NLL and MSE are used as the fitness function, respectively. The simulations are

repeated 50 times with same training and test samples. The results in terms of MSE

value, convergence rate and computer run-time are averaged values.

All simulations are performed on a computer with a 3.40GHz Intel� CoreTM 2 Duo

CPU with 16 GB RAM, using Matlab� version 8.1. In addition, the parameters related

to the CGP and PSO models in the simulations are listed in the Table 3.2. Note that

the number of restarts for CG is designed to give a fair comparison with PSO with the

given population size and number of iterations.

34

Chapter 3. Hybrid PSO for Hyperparameters Learning

3.3.1 Standard PSO with MSE Fitness

We study the effectiveness and benefit of PSO based hyperparameters learning method.

The proposed PSO with MSE fitness is compared to existing NLL fitness based PSO, as

well as commonly used CG algorithm. The convergence of proposed PSO is not discussed

due to it is not our concern in this simulation.

Single-Output Modelling

The numerical system used in the simulation is described by the following difference

equation,
y(k) =0.893y(k − 1) + 0.037y2(k − 1)− 0.05y(k − 2)

+ 0.157u(k − 1)− 0.05u(k − 1)y(k − 1)
(3.13)

where u(k) is the input and y(k) is the output. Although this dynamical system has

only 1 input and 1 output, the CGP modelling inputs will be u(k − 1), y(k − 1) and

y(k − 2), making it a 3-input and 1-output model. Only a single output is used here for

modelling to simplify the comparison. In addition, we randomly chose 1000 inputs in

u ∼ U(−2, 4) and apply them into the system. This allows us collect 1000 observations

including inputs, states and outputs.

First we aim to verify the effectiveness of minimizing the model errors by using stan-

dard PSO in the hyperparameters learning problem. The 50 simulations are performed

with the same 200 training and 50 test data randomly selected from the 1000 observations.

To study the influence of PSO population size, the simulations are also independently

performed for each population size of 10, 25, 50 and 100. The obtained results are given

in Table 3.3 in terms of Mean Absolute Error (MAE) and average variance (Var) values,

where PSO/1 represents the proposed approach and PSO/2 denotes the PSO with NLL

fitness. Overall, the both two approaches produce equally good CGP model due to

close MAE and Var values. In addition, the results also suggest that a value of 25 to

50 may be a good choice of PSO population size. This is because a bigger size normally

requires much more runtime (exponentially increasing).

Next, we want to determine the effect of the hyperparameters search space. Two

different cases are considered here. In the first case, it is assumed that a prior knowledge

35

Chapter 3. Hybrid PSO for Hyperparameters Learning

Search within Certain Space Search within Uncertain Space
0

0.5

1

1.5

2

2.5

3
x 10−3

A
ve

ra
ge

 M
ea

n
A

bs
ol

ut
e

E
rr

or
PSO/2
CG

Figure 3.1: Obtained MAE in the single-output dynamical system modelling over 50 runs

Table 3.3: Comparison of two PSOs with different population sizes

Np
MAE Var

PSO/1 PSO/2 PSO/1 PSO/2
10 0.2297 0.2355 1.52e-02 2.44e-02
25 0.0054 0.0047 9.05e-03 3.64e-03
50 0.0022 0.0021 8.66e-03 4.37e-03
100 0.0011 0.0012 9.14e-03 9.74e-04

of value ranges for the parameters in (3.12) is available. Specifically, they are

νd,i, υq ∈ {1, 2}
αi, βj ∈ {0, 1} (3.14)

where αi and βj are the elements of the diagonal precision matrices Pd and Pq respec-

tively. In the second case, we do not assume any prior knowledge of the value ranges. The

obtained MAE values using the proposed PSO are given in Figure 3.1 and are compared

to those using CG. The results show that the learnt CGP models by using PSO and CG

perform equally good when the search space is well defined. Figure 3.2.a confirms that

36

Chapter 3. Hybrid PSO for Hyperparameters Learning

0 5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Input

O
ut

pu
t

Real model
CG model mean
PSO/1 model mean

3.2.a: Well defined search range

0 5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Input

O
ut

pu
t

Real model
CG model mean
PSO/1 model mean

3.2.b: Not well defined search range

Figure 3.2: Predicted outputs in the single-output simulations

Table 3.4: Results of Linear Relationship

MAE SE
PSO CG PSO CG

y1 1.41E-04 4.46E-04 0084 0.0327
y2 1.11E-04 2.18E-04 0.147 0.0446

Table 3.5: Results of Nonlinear Relationship

MAE SE
PSO CG PSO CG

y1 4.41E-04 5.36E-04 0.0065 0.043
y2 3.57E-04 8.11E-04 0.0064 0.0356

the predicted outputs are very close to the actual values. However, when the search

space is not well constrained, the proposed PSO outperforms CG by a wide margin. Fig-

ure 3.2.b shows that while the predicted CGP outputs by the PSO are still very close to

the actual values, there are some clear deviations with by the CG.

3.3.2 Two-output Modelling

Systems with multiple-outputs can be modelled in two different ways. One is to use

multiple single-output models and the other is to provide a single model for all outputs

at the same time. While the first approach is often simpler, the latter approach is able

to capture correlation between outputs. For example, a robot arm system with multiple

degrees of freedom has multiple outputs that are strongly correlated. Another example is

37

Chapter 3. Hybrid PSO for Hyperparameters Learning

CG/Y1 PSO/Y1 CG/Y2 PSO/Y2
−4

−2

0

2

4

6

8
x 10−4

A
ve

ra
ge

 M
ea

n
A

bs
ol

ut
e

E
rr

or
 w

ith
 2

 S
ta

nd
ar

d
E

rr
or

3.3.a: y2 = −y1

CG/Y1 PSO/Y1 CG/Y2 PSO/Y2
−4

−2

0

2

4

6

8
x 10−4

A
ve

ra
ge

 M
ea

n
A

bs
ol

ut
e

E
rr

or
 w

ith
 2

 S
ta

nd
ar

d
E

rr
or

3.3.b: y2 = exp(y1)

Figure 3.3: MIMO dynamical system modelling results: MAE and 2 standard errors
(divided by 0.01) over 50 runs

the prediction of steel mechanical properties in [109], where the yield and tensile strength

are predicted from the chemical compositions and grain size. These two “outputs” are

highly correlated.

We shall continue to use the dynamical system in (3.13). Since it has only one output

y (denoted y1 here), a second output y2 will be created which is a function of y1. Two

such functions are considered, one linear and the other nonlinear, given by y2 = −y1 and

y2 = exp(y1) respectively. Two different sets of training data, each has 200 samples,

are selected from the 1000 observations. The test data consists of 50 samples which are

different from the training samples.

Tables 3.4 and 3.5 show the performances of using PSO and CG. The same results

are also shown in Figure 3.3 with an indication of the deviations. For outputs y1 and y2

in both two MIMO systems, the CGP models learnt by using PSO exhibit smaller MAE

and standard error (SE) values.

3.3.3 Enhanced PSO Algorithms

Next, we demonstrate the optimization performances of proposed enhanced PSO algo-

rithms for CGP hyperparameters learning problem. Three enhanced PSOs are compared

with the standard PSO and CG algorithms in the modelling two non-trivial MIMO sys-

tems, with respect to the model accuracy, runtime as well as convergence.

38

Chapter 3. Hybrid PSO for Hyperparameters Learning

LTV System Modelling

Consider a 2-input-2-output Linear Time-Varying (LTV) system [110] defined by,

ẋ(t) = A(t) · x(t) +B(t) · u(t)
y(t) = C(t) · x(t) +D(t) · u(t) (3.15)

where A,B,C and D are defined as:

A(t) =

⎡
⎣ 0.3− 0.9Γ1t 0.1 0.7Γ2t

0.6Γ1t 0.3− 0.8Γ2t 0.01
0.5 0.15 0.6− 0.9Γ1t

⎤
⎦

B =

⎡
⎣ 1 0
1 −1
0 1

⎤
⎦C =

[
1 0 1
1 −1 0

]
D = 0.1

[
1 0
0 1

] (3.16)

Matrix A has time-varying parameters Γ1t = sin(10t) and Γ2t = cos(10t). The two

control inputs are given by u1(t) = 0.5 sin(12t) and u2(t) = cos(7t). They have zero

initial conditions.

Using a sampling interval of 0.05s, 200 data records which include the inputs, states

and outputs are generated. Out of these data, 60 samples are selected randomly for

training the CGP models, and all 200 samples are employed for testing.

First, the results of using LL fitness function are discussed. Table 3.6 shows the MSE

of the predicted outputs of the obtained CGP models. These results show that, the

gradient and hybrid PSO algorithms are able to produce smaller MSE than the other

two PSO algorithms. However, the runtime of the gradient PSO is longer than the other

three PSO algorithms due to gradient computations. It is also interesting to note that the

CG algorithm took significantly longer to converge to the solution than PSO algorithms.

The convergence behaviour of the PSO algorithms with LL fitness function is shown

in Figure 3.4.a, averaged over 50 runs. It shows that both the hybrid and multi-start algo-

rithms converges to a near-optimal solution much faster than the other two alternatives.

Thus it can be concluded that these two algorithms perform better global search ability at

the early stages (approximately before 150 iterations) than standard and gradient PSO.

Next we discuss the results of using MSE fitness. Due to similar MSE values and

runtime of 4 PSO algorithms are produced, therefore they are not shown here. The

convergence behaviour of the PSO algorithms with MSE fitness function averaged over

39

Chapter 3. Hybrid PSO for Hyperparameters Learning

0 100 200 300 400 500
200

300

400

500

600

700

800

900

Iterations

N
eg

at
iv

e
Lo

g−
Li

ke
lih

oo
d

Standard
Multi−Start
Gradient−based
Hybrid

3.4.a: Log-Likelihood Fitness

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

Iterations

M
ea

n
S

qu
ar

e
E

rr
or

s

Standard
Multi−Start
Gradient−based
Hybrid

3.4.b: MSE Fitness

Figure 3.4: Convergence behaviour of the four PSO algorithms in modelling the LTV
system

Table 3.6: CGP model accuracies over 50 runs for the LTV system.

PSO CG
Standard Gradient Multi-Start Hybrid

MSE of y1 0.4413 0.1159 0.3882 0.1975 0.2235
MSE of y2 0.4934 0.1699 0.3806 0.1556 0.2473
Time ≈18s ≈23s ≈18s ≈19s � 5min

50 runs are given in Figure 3.4.b. The results show again that, overall the hybrid PSO

has the best optimization performance than other 3 PSO algorithms due to the global

search ability as well as multi-start PSO and local search ability as well as gradient PSO.

NLTV System Modelling

The second simulation involves the CGP modelling of a Nonlinear Time-Varying (NLTV)

system controlled by a Partial Form Dynamic Linearization (PFDL) based Model-Free

Adaptive Control (MFAC) controller with the same parameters as in [111]. The 4-input

40

Chapter 3. Hybrid PSO for Hyperparameters Learning

and 2-output numerical system is described by,

x11(k + 1) =
x11(k)

2

1 + x11(k)2
+ 0.3x12(k)

x12(k + 1) =
x11(k)

2

1 + x12(k)2 + x21(k)2 + x22(k)2
+ a(k)u1(k)

x21(k + 1) =
x21(k)

2

1 + x21(k)2
+ 0.2x22(k)

x22(k + 1) =
x21(k)

2

1 + x11(k)2 + x12(k)2 + x22(k)2
+ b(k)u2(k)

y1(k + 1) =x11(k + 1) + 0.005 ∗ rand(1)
y2(k + 1) =x21(k + 1) + 0.005 ∗ rand(1)

(3.17)

where the time-varying parameters are given by,

a(k) = 1 + 0.1 sin(2πk/1500) (3.18a)

b(k) = 1 + 0.1 cos(2πk/1500) (3.18b)

This system is to track two trajectories. One involves a “Step” trajectory given by,

y∗1(k) =

⎧⎪⎨
⎪⎩
0.4 k ≤ 500

0.7 500 < k ≤ 1000

0.5 1000 < k ≤ 1500

(3.19a)

y∗2(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.6 k ≤ 300

0.8 300 < k ≤ 700

0.7 700 < k ≤ 1200

0.5 1200 < k ≤ 1500

(3.19b)

the other is “Curve” trajectory specified by,

y∗1(k) = 0.75 sin(
πk

8
) + 0.5 cos(

πk

4
) (3.20a)

y∗2(k) = 0.5 cos(
πk

8
) + 0.5 sin(

πk

4
) (3.20b)

The initial values of the system are [112]: x11(1) = x11(2) = x21(1) = x21(2) = 0.5,

x12(1) = x12(2) = x22(1) = x22(2) = 0, and u1(1) = u1(2) = u2(1) = u2(2) = 0. The

reference outputs and inputs for the two trajectories are shown in Figures 3.5.

First, we discuss the results of using LL as fitness function. Table 3.7 shows the results

of CGP modelling of the NLTV system tracking both the “Step” and “Curve” trajectories

41

Chapter 3. Hybrid PSO for Hyperparameters Learning

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

 O
ut

pu
t y

1(k
)

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Step

O
ut

pu
t y

2(k
)

reference
PFDL output

3.5.a: “Step” Trajectory–Outputs y(k)

0 500 1000 1500
−0.5

0

0.5

1

1.5

2

2.5

Step

C
on

tro
l S

ig
na

ls

PFDL input u1(k)

PFDL input u2(k)

3.5.b: “Step” Trajectory–Inputs u(k)

0 50 100 150 200
−1.5

−1

−0.5

0

0.5

1

 O
ut

pu
t y

1(k
)

0 50 100 150 200
−1

−0.5

0

0.5

1

Step

O
ut

pu
t y

2(k
)

reference
PFDL output

3.5.c: “Curve” Trajectory–Outputs y(k)

0 50 100 150 200
−6

−5

−4

−3

−2

−1

0

1

2

3

Step

C
on

tro
l S

ig
na

ls
PFDL input u1(k)

PFDL input u2(k)

3.5.d: “Curve” Trajectory–Inputs u(k)

Figure 3.5: Reference PFDL inputs and outputs for the two trajectories

using the five different algorithms for hyperparameter learning. These results are average

of 50 independent simulations. All three enhanced PSO algorithms outperform the stan-

dard PSO as well as CG. Specifically, the hybrid PSO produces the second best model

accuracy (slightly bigger than the best one of gradient PSO), and while the runtime is

comparable to the standard and multi-start PSO. Figure 3.6.a shows the convergence

behaviour of the various PSO algorithms for the “Step” trajectory. In this case, the

hybrid and multi-start PSO converge faster than the other PSO algorithms initially and

the hybrid algorithm eventually achieves a smaller model error. The similar convergence

behaviours of the “Curve” trajectory can be found in Figure 3.6.b .

Next, the convergence behaviours of PSO algorithms when using MSE fitness are

discussed. For the “Step” trajectory simulation, three enhanced PSOs approach the near-

42

Chapter 3. Hybrid PSO for Hyperparameters Learning

0 100 200 300 400 500
−200

−150

−100

−50

0

50

100

150

Iterations

N
eg

at
iv

e
Lo

g−
Li

ke
lih

oo
d

Standard
Multi−Start
Gradient−based
Hybrid

3.6.a: “Step” Trajectory

0 100 200 300 400 500
−20

−10

0

10

20

30

40

50

60

Iterations

N
eg

at
iv

e
Lo

g−
Li

ke
lih

oo
d

Standard
Multi−Start
Gradient−based
Hybrid

3.6.b: “Curve” Trajectory

Figure 3.6: Convergence behaviour of the four PSO algorithms with LL fitness in mod-
elling the NLTV system

Table 3.7: CGP model accuracies over 50 runs for the NLTV system.

PSO
CG

Standard Gradient Multi-Start Hybrid
“Step” Trajectory

MSE of y1 0.8378 0.0084 0.0179 0.0124 0.1221
MSE of y2 0.2218 0.0062 0.0337 0.0127 0.1273
Time ≈28s ≈40s ≈28s ≈31s � 5min

“Curve” Trajectory
MSE of y1 0.3083 0.0417 0.1594 0.0633 0.1541
MSE of y2 0.1627 0.0402 0.1098 0.0516 0.2333
Time ≈27s ≈39s ≈27s ≈29s � 5min

optima faster than standard PSO algorithm while gradient and hybrid PSOs eventually

achieve the smaller model errors. In addition, for the “Curve” trajectory simulation,

three enhanced PSOs perform better optimization ability than standard PSO algorithms

again. Specifically, the multi-start and hybrid PSOs converge faster while the gradient

and hybrid PSOs are able to produce smaller MSE values.

The trade-off between the size of training data and the model accuracy is demon-

strated using the hybrid PSO algorithm. The results, given in Table 3.8, are again

averaged over 50 simulations. The training data are uniformly chosen from the control

interval shown in Figures 3.5.b and 3.5.d. As expected, the model accuracy improves as

the training data size increases. However, the algorithm runtime increases exponentially

with data size. For a data size of 100, the model error and PSO runtime for both tra-

43

Chapter 3. Hybrid PSO for Hyperparameters Learning

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

M
ea

n
S

qu
ar

e
E

rr
or

s

Standard
Multi−Start
Gradient−based
Hybrid

3.7.a: “Step” Trajectory

0 100 200 300 400 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

M
ea

n
S

qu
ar

e
E

rr
or

s

Standard
Multi−Start
Gradient−based
Hybrid

3.7.b: “Curve” Trajectory

Figure 3.7: Convergence behaviour of the four PSO algorithms with MSE fitness in
modelling the NLTV system

Table 3.8: Effects of training data size on model error and hybrid PSO runtime.

Training Average MSE
Time

Data Size y1 y2
“Step” Trajectory

20 0.0377 0.0511 ≈12s
40 6.1475e-04 7.611e-04 ≈17s
100 1.1292e-04 1.3543e-04 ≈31s
200 1.3411e-05 1.8854e-05 ≈110s

“Curve” Trajectory
25 0.0562 0.0665 ≈14s
50 0.0031 0.0032 ≈18s
75 0.0012 0.0011 ≈23s
100 1.1712e-04 1.9201e-04 ≈29s

jectories are similar. Furthermore, the results also show that the system with piecewise

constant outputs (“Step” trajectory) can be modelled with far fewer training data com-

pared with the one with smooth outputs (“Curve” trajectory). This is despite the jump

discontinuities in the outputs.

3.4 Conclusion

The hyperparameters of the GP models are conventionally learnt by minimizing the NLL

function. This typically leads to an unconstrained nonlinear non-convex optimization

44

Chapter 3. Hybrid PSO for Hyperparameters Learning

problem that is usually solved by using the CG algorithm. Three enhanced PSO al-

gorithms have been proposed in this chapter to improve the hyperparameter learning

for CGP models of MIMO systems. They make use of gradient information and also

combine it with the multi-start technique. Using a LTV and a NLTV system, we have

shown that these algorithms are more effective in avoiding getting stuck in local optima.

Hence they are able to produce more accurate models of the systems. Results showed

that the hybrid PSO algorithm allows the faster convergence and produces the more

accurate models. These algorithms also may make use of the MSE of the outputs rather

than the LL function as the fitness function for optimization. This enables us to assess

the quality of intermediate solutions more directly.

45

Chapter 3. Hybrid PSO for Hyperparameters Learning

46

Chapter 4

Unconstrained Model Predictive
Control Using Gaussian Process
Models

The focus of this chapter is on unconstrained MPC of unknown systems modelled by

GP models. As an effective implementation is described in Section 4.1. The problem is

solved efficiently by using a gradient based solution. The simulation results in Section 4.2

demonstrate that the proposed solution is effective and computationally efficient.

4.1 Unconstrained MPC based on GP Models

4.1.1 Unknown Dynamical System Modelling using GP

Consider a dynamical system with states x ∈ R
n and controls u ∈ R

m which are related

by

xk+1 = f (xk,uk, k) +wk (4.1)

where k is the integer index of time, f(·) is an unknown nonlinear time-varying function,
and w ∈ R

n represents Gaussian noise with zero mean and variance Σw. To model

this system using GP model, we use the state-control tuples x̃k = (xk,uk) ∈ R
n+m

and state differences δxk = xk+1 − xk ∈ R
n are used as training inputs and targets

respectively [113, 114]. This approach can be advantageous when changes in δx are less

than changes in x. When there are multiple targets, a separate GP model can be trained

for each independent target.

47

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

A GP model is completely specified by its mean and covariance function [17]. Without

loss of generality, it is usually assume that the prior mean is zero and the squared expo-

nential covariance is computed byK(x̃i, x̃j) = σ2
s exp(−

1

2
(x̃i−x̃j)TΛ(x̃i−x̃j))+σ2

n, where

σ2
s , σ

2
n and entries of matrix Λ are hyperparameters of a GP model. Thus, given D train-

ing inputs X̃ = [x̃1, · · · , x̃D] and corresponding training targets y = [Δx1, · · · ,ΔxD]T
at the sampling time k, the joint distribution between training targets and a test target

Δx∗
k at a training input x̃

∗
k follows a Gaussian distribution

p

(
y

Δx∗
k

)
∼ N

(
0,
K(X̃, X̃) + σnI K(X̃, x̃∗

k)

K(x̃∗
k, X̃) K(x̃∗

k, x̃
∗
k)

)
(4.2)

Furthermore, through restricting the joint distribution to only contain those targets that

agree with collected observations, we can obtain the Gaussian posterior distribution with

mean and variance function

m(x̃∗
k) = Ef [Δx

∗
k] = K(x̃∗

k, X̃)K
−1
σ y (4.3a)

σ2(x̃∗
k) = Varf [Δx

∗
k] = K(x̃∗

k, x̃
∗
k) (4.3b)

−K(x̃∗
k, X̃)K

−1
σ K(X̃, x̃

∗
k)

where Kσ = K(X̃, X̃) + σnI. Then it is known that the state at next sampling time also

is a GP

p(xk+1) ∼ N (μk+1,Σk+1) (4.4)

where

μk+1 = xk +m(x̃∗
k) (4.5a)

Σk+1 = σ2(x̃∗
k) (4.5b)

The approaches to learn hyperparameters θ = [σs, σn, vec(Λ)] are presented in Chap-

ter 3, where vec(·) denotes vectorization of given matrix.

4.1.2 Uncertainty propagation

The obtained GP model makes one-step ahead prediction by using (4.3). For multiple-

step predictions, the conventional way is to perform multiple one-step ahead predictions

using estimated mean values iteratively. However, the uncertainties induced by each suc-

cessive prediction are not taken into account. This issue has been shown to be important

48

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

in [91] with a time-series prediction task.

The uncertainty propagation problem can be dealt with by assuming that the joint

distribution of the training input at sample time k is uncertain and follows a Gaussian

distribution

p(x̃k) = p
(
xk,uk

) ∼ N (μ̃k, Σ̃k) (4.6)

with the mean and variance

μ̃k =

[
μk,E

[
uk

]]T
(4.7a)

Σ̃k =

[
Σk Cov

[
xk,uk

]
Cov

[
uk,xk

]
Var

[
uk

]]
(4.7b)

where E
[
uk

]
and Var

[
uk

]
are mean and variance of system controls, Cov

[
xk,uk

]
=

E
[
xkuk

]− μkE
[
uk

]
.

The exact predictive distribution of the training target then can be obtained by

integrating over the training input distribution

p(Δx∗
k) =

∫
p(f(x̃∗

k)|x̃∗
k)p(x̃

∗
k)dx̃

∗
k (4.8)

However, this integration is analytically intractable due to a nonlinear mapping of a GP

distribution results in a non-Gaussian distribution. One possible solution is using the

Monte-Carlo approach to obtain a numerical approximation. In [115], a moment-matching

based approach is proposed to obtain an analytical Gaussian approximation. Its the mean

and variance at an uncertain input are computed by the laws of iterated expectations

and conditional variances respectively

m(x̃∗
k) = Ex̃∗

k

[
Ef

[
Δx∗

k

]]
(4.9a)

σ2(x̃∗
k) = Ex̃∗

k

[
Varf

[
Δx∗

k

]]
+ Varx̃∗

k

[
Ef

[
Δx∗

k

]]
(4.9b)

The further elaborations of (4.9) can be found in Appendix A. Then the state distribution

at sampling time k + 1 in (4.5) becomes

μk+1 =μk +m(x̃∗
k) (4.10a)

Σk+1 =Σk + σ2(x̃∗
k) (4.10b)

+ Cov
[
xk,Δxk

]
+ Cov

[
Δxk,xk

]

49

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

where the computation of Cov
[
xk,Δxk

]
can be found in Appendix B.

The computational complexity of GP inference (4.9) is O(D2n2(n +m)). Thus, GP

is normally only suitable for problems with limited dimensions (under 12 as suggested

by most publications) and limited size of training data. For problems with higher di-

mensions, a sparse approximation technique is often used to reduce the computational

burden when using GP models. A review of commonly used sparse approximations can

be found in [116].

4.1.3 GP based MPC

Consider an unconstrained MPC optimal control problem with the following objective

function

V∗
k = min

u(·)
J (xk,uk−1) (4.11)

where the cost function J is given by

J (xk,uk−1) =
H∑
i=1

{
(xk+i − rk+i)

TQ(xk+i − rk+i) + u
T
k+i−1Ruk+i−1

}
(4.12)

Here, r denotes the target reference, Q ∈ R
n×n and R ∈ R

m×m are positive definite

weighting matrices, and the prediction horizon H is assumed to be same as the control

horizon.

If the dynamical system (4.1) is represented by GP models, the predictions of xk are

stochastic. Hence the MPC is a stochastic one and (4.11) becomes [117, 118]

V∗
k = min

u(·)
E [J (xk,uk−1)] (4.13)

The expected value of the cost function can be derived as

E [J (xk,uk−1)] = E

[
H∑
i=1

{
(xk+i − rk+i)

TQ(xk+i − rk+i) + u
T
k+i−1Ruk+i−1

}]

=
H∑
i=1

E
[
(xk+i − rk+i)

TQ(xk+i − rk+i) + u
T
k+i−1Ruk+i−1

] (4.14)

Since the controls have to be deterministic in practice, the joint distribution of the state-

50

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

control tuple at sample time k is then given by

p(x̃k) = p

(
xk
uk

)
∼ N

([
μk

uk

]
,

[
Σk Cov[xk,uk]

Cov[uk,xk] Var[uk]

])
(4.15)

where Cov[xk,uk],Cov[uk,xk] and Var[uk] are zero. As given in Appendix D, the cost

function (4.14) can be simplified to

E [J (xk,uk−1)]

=
H∑
i=1

{
E
[
(xk+i − rk+i)

TQ(xk+i − rk+i)
]
+ uTk+i−1Ruk+i−1

}

=
H∑
i=1

{
(μk+i − rk+i)

TQ(μk+i − rk+i) + trace(QΣk+i) + u
T
k+i−1Ruk+i−1

} (4.16)

This simplification essentially transformed the stochastic cost function into a determinis-

tic one. Therefore most linear and nonlinear optimization methods can be used to solve

the problem.

4.1.4 Gradient Based Optimization

Solving (4.13) is computationally demanding. The computational complexity of the one-

step moment matching in (4.9) alone requires O(D2n2(n + m)) operations. With the

complexities of both hyperparameters learning and GP inferences, only problems with

limited dimensions (under 12 as suggested by most publications) and limited size of

training data can make use of GP based MPC. In this section, we shall describe our

gradient-based method to solve this problem that is able to reduce the computational

burden significantly.

Assuming h(z) = E[J (xk,uk−1)], the optimization problem (4.13) can be described

in a condensed form as

z∗ = argmin
z∈Z

h(z) (4.17)

with initial guess z0 ⊆ R
m, and h(·) is a value-based differentiable function over the whole

solution domain Z ⊆ R
m. z∗ denotes an optimal solution that satisfies �zh(z

∗) = 0 and

�2
zh(z

∗) ≥ 0. Note that optimization approaches using second-order derivatives �2
zh(·),

such as Newton’s method that using second-order derivatives to construct a Hessian

matrix, can improve the accuracy but is computational demanding. Therefore we only

use the first-order derivative �zh(·) to keep the algorithm simple, even though both

51

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

derivatives are available when using GP models [113].

The optimal solution z∗ can be obtained by iteratively conducting a linear or steepest

descent search

z(i+ 1) = z(i) + αs�zh(z(i)) (4.18)

until finding one that satisfies h(z(i))− h(z∗) ≥ ε, where ε is a predefined tolerance, and

αs is search step size. A way to tune this step size can be found in [119]. Using this

method, suboptimal solutions to (4.13) can still be found even if it is non-convex.

The key issue in implementing this gradient-based method on problem (4.13) is com-

puting the gradients that are derivatives of the value function w.r.t. controls. Numerical

methods such as finite difference [120] are often used to approximate the gradients. They

are easy to implement but may lead to poor gradients due to the nature of approxima-

tion methods [121]. Fortunately, with the use of GP models to represent the dynamical

system, the gradients can be readily obtained analytically without the need for numerical

approximations.

Let

Hi =(μk+i − rk+i)
TQ(μk+i − rk+i) + trace(QΣk+i) + u

T
k+i−1Ruk+i−1 (4.19)

Then from (4.16), E [J (xk,uk−1)] =
H∑
i=1

Hi. The gradients
dE [J (xk,uk−1)]

duk−1

can be

obtained by using the chain-rule,

d

duk−1

E [J (xk,uk−1)] =
H∑
i=1

dHi

duk+i−1

(4.20)

and
dHi

duk+i−1

=
∂Hi

∂μk+i

∂μk+i

∂uk+i−1

+
∂Hi

∂Σk+i

∂Σk+i

∂uk+i−1

+
∂Hi

∂uk+i−1

(4.21)

where
∂Hk

∂μk+i

,
∂Hk

∂Σk+i

and
∂Hk

∂uk−1

can be easily obtained. Also,

∂μk+i

∂uk+i−1

=
∂μk+i

∂μ̃k+i−1

∂μ̃k+i−1

∂uk+i−1

∂Σk+i

∂uk+i−1

=
∂Σk+i

∂Σ̃k+i−1

∂Σ̃k+i−1

∂uk+i−1

(4.22)

52

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

1 InitializationLearning GP Models, H, rk, Q,R. Initialization :
Maximum iterations N = 1000,
ε = 1.0× 10−6,
initial inputs u0 and optimal controls u

∗ = u0;

2 for i = 1 to N do
3 if E[J (ui)] ≤ ε then
4 u∗ = ui;
5 End Loop;

6 else

7 Calculate gradients
dE [J (ui)]
dui−1

using (4.21);

8 Update step length αs according to [119];

9 Update controls ui+1 = ui + αs
dE [J (ui)]
dui−1

;

10 i = i+ 1;

11 end

12 end
Output: Optimal controls u∗.

Algorithm 5: Analytical gradient based optimization method

where
∂μ̃k+i−1

∂uk+i−1

and
∂Σ̃k+i−1

∂uk+i−1

can be easily obtained as well. More details about compu-

tations of
∂μk+i

∂μ̃k+i−1

and
∂Σk+i

∂Σ̃k+i−1

can be found in Appendix C. Algorithm 5 summarizes

our proposed optimization method using analytical gradients at each iteration of MPC

optimization.

4.2 Simulation Results

The performance of proposed GP based MPC algorithm is verified by simulations on

the trajectory tracking problems of MIMO LTV and NLTV systems. All simulations are

independently conducted 50 times.

4.2.1 Numerical Simulations of LTV System

The 2-inputs and 2-outputs LTV numerical example used here is given as follows,

ẋ =

[
1 0
0 1

]
x+

[
a(t) 1
b(t) 0

]
u+wk (4.23)

53

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

0 20 40 60 80 100 120 140
−0.08

−0.06

−0.04

−0.02

0

0.02

Y
1(k

)

"Duffing" Trajectory −− Traning Errors
Traning Size = 140

0 20 40 60 80 100 120 140
−0.02

0

0.02

Y
2(k

)

sample time k

4.1.a: Learning Errors

0 50 100 150 200 250
−0.1

−0.05

0

0.05

0.1

Y
1(k

)

"Duffing" Trajectory −− Testing Errors
Testing Size = 250

0 50 100 150 200 250
−0.04

−0.02

0

0.02

0.04

Y
2(k

)

sample time k

4.1.b: Testing Errors

Figure 4.1: GP Modelling results of unknown LTV system in the “Duffing” trajectory
tracking problem

where x = [x1,x2]
T and u = [u1,u2]

T denotes states and inputs. The numerical system

is corrupted by a Gaussian noises w ∼ N (0, 0.01).

“Duffing” Trajectory Tracking

In the first simulation, the time-varying parameters are defined by,

a(t) = 1 + sin
(2πt

1500

)
(4.24a)

b(t) = cos
(2πt

1500

)
(4.24b)

To collect observations, the system firstly is controlled to follow the so called “Duff-

ing” trajectory (shown as grey dotted line in Figure 4.2.a) through using a linear MPC

approach proposed in [122]. Then, 250 observations including states and controls are

collected. We use 140 and all of them to train and test GP models, respectively. As

a result, the overall learning process takes approximated 0.5 seconds. Meanwhile, the

training MSE is 2.2338×10−4 while the test MSE is 3.4091×10−4. These results demon-

strate a well modelling performance of using GP models. The learning and testing errors

over the sampling time is given in Figure 4.1.a and 4.1.b, respectively.

The learned GP models are then used to predict future system responses in the track-

ing problem. Theoretically, a long enough prediction horizon H is required to guarantee

stability and feasibility of using MPC scheme [123]. The approach to estimate required H

54

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

0 50 100 150 200 250
−2

−1

0

1

2

x 1(k
)

0 50 100 150 200 250
−1

−0.5

0

0.5

1

x 2(k
)

sample time k

Reference
LMPC
GPMPC
Grad−based GPMPC

4.2.a: Controlled States

0 50 100 150 200 250
−0.4

−0.2

0

0.2

0.4

u
1
(k

)

0 50 100 150 200 250
−0.5

0

0.5

1

1.5

sample time k

u
2
(k

)

LMPC

GPMPC

Grad−based GPMPC

4.2.b: Control Inputs

Figure 4.2: Simulation results of using GP based MPC in the “Duffing” trajectory track-
ing problem

is discussed in [124]. However, a longer time also may be required to solve MPC optimiza-

tion problems because computational burdens are increased. The consideration of this

issue is especially important when using data-driven GP models due to their computa-

tional issues. The prediction and control horizon both are defined as 1 to make a trade-off

in this simulation. In addition, the MPC optimization problem (4.11) is solved by the

derivative-free Nelder-Mead approach which attempts to minimize a scalar-valued nonlin-

ear function of multiple variables using only function values [125]. The controlled states

and control inputs in the “Duffing” trajectory tracking problem are given in Figure 4.2.a

and 4.2.b, respectively. Where “Grad-based GPMPC” denotes the proposed MPC ap-

proach using analytical gradients, while “GPMPC” is GP based MPC without using

gradients. Meanwhile, the simulation result of using linear MPC (shown as “LMPC”

in the figures) is used as a reference. Based on controlled states given in Figure 4.2.a,

“LMPC” based on the exact numerical model produces the best controlled states that

closely follow the trajectory. Over the whole trajectory, the tracking MSE is 0.0098 on x1,

and 6.9009× 10−4 on x2. In addition, “GPMPC” is able to perform as well as “LMPC”

after first 25 sample time because of close control inputs shown in Figure 4.2.b and track-

ing MSE values. In particular, we obtain 7.979× 10−4 and 6.921× 10−4 MSE values on

x1 and x2 when using “GPMPC”, they are quite close to 3.771×10−4 and 4.686×10−4 of

using “LMPC”. Finally, through using “Grad-based GPMPC” approach, the controlled

states overall follow the trajectory even though we obtain the bigger tracking MSE, i.e.

0.0202 on x1 and 0.0175 on x2, than others. Probably, this is mainly because larger

average predicted variances are produced when using “Grad-based GPMPC” approach

55

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

as shown in Figure 4.5.a. Particularly, they are 0.01 on x1 and 0.0127 on x2 than 0.0077

and 0.0071 of using “GPMPC”.

However, it takes over 70 seconds to iteratively compute 250 controls when using

“GPMPC” in the first tracking problem. By using proposed “Grad-based GPMPC”

approach, the required time is reduced to approximately 35 seconds. This demonstrates

that optimization problem can be solved more efficiently through using “Grad-based

GPMPC” approach.

4.2.2 “Lorenz” Trajectory Tracking

In the second simulation, the control task is tracking a 2D “Lorenz” trajectory, shown in

Figure 4.4.a. The time-varying parameters are now defined by,

a(t) =
1− exp(−t2)

t
(4.25a)

b(t) =1 (4.25b)

Similarly, we use a linear MPC strategy firstly to conduct the “Lorenz” trajectory track-

ing task. In this way, we collect 180 state-control observations. To learn GP models,

100 and all of them are used for training and testing, respectively. The overall learning

process takes approximately 0.57s. In addition, we obtain 8.7979 × 10−5 training and

4.0674 × 10−4 testing MSE values. The learning and testing errors over the sampling

time in the “Lorenz” trajectory tracking problem is given in Figure 4.3.a and 4.3.b,

respectively.

As well, in the MPC, we define prediction horizon as H = 1. And the derivative-free

Nelder-Mead and proposed algorithms are used to solve the optimization problem.

As shown in Figure 4.4.a, controlled states by using “LMPC” can closely follow the

“Lorenz” trajectory when the exact dynamical model is available. In this situation, the

tracking MSE is only 0.0043 on x1 and 0.0151 on x2. The dynamical system can follow the

trajectory as well by using proposed “GPMPC” and “Grad-based GPMPC” algorithms

when exact model of the system is unknown and learnt by GP models. According to

simulation results, two proposed approaches are equally able to produce controlled states

that are overall close to target trajectory, even though bigger tracking MSE values they

produced than those of “LMPC”. In particular, The tracking MSE of using “GPMPC” is

1.0013 on x1 and 0.9778 on x2 that are close to 1.0012 and 0.9772 when using “Grad-based

56

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

0 20 40 60 80 100

−0.02

0

0.02

Y
1(k

)

"Lorenz" Trajectory −− Traning Errors
Traning Size = 100

0 20 40 60 80 100
−0.02

−0.01

0

0.01

0.02

Y
2(k

)

sample time k

4.3.a: Learning Errors

0 20 40 60 80 100 120 140 160 180
−0.06

−0.04

−0.02

0

0.02

Y
1(k

)

"Lorenz" Trajectory −− Testing Errors
Testing Size = 180

0 20 40 60 80 100 120 140 160 180
−0.04

−0.02

0

0.02

0.04

Y
2(k

)

sample time k

4.3.b: Testing Errors

Figure 4.3: GP Modelling results of unknown LTV system in the “Lorenz” trajectory
tracking problem

0 20 40 60 80 100 120 140 160 180
−10

−5

0

5

10

15

x 1(k
)

0 20 40 60 80 100 120 140 160 180
−20

−10

0

10

20

x 2(k
)

sample time k

Reference
LMPC
GPMPC
Grad−based GPMPC

4.4.a: Controlled States

0 20 40 60 80 100 120 140 160 180
−4

−2

0

2

4

u
1
(k

)

0 20 40 60 80 100 120 140 160 180
−2

−1

0

1

2

sample time k

u
2
(k

)

LMPC

GPMPC

Grad−based GPMPC

4.4.b: Control Inputs

Figure 4.4: Simulation results of using GP based MPC in the “Lorenz” trajectory tracking
problem

GPMPC” approach. In addition, as shown in Figure 4.4.b, control inputs of using these

two approaches are approximately equal as well. The same situation again happens when

we compute average predicted variances given in Figure 4.5.b. The obtained average

variance when using “GPMPC” is 1.8112 on x1 and 0.9505 on x2, and is 1.8118 on

x1 and 0.9504 on x2 when using “Grad-based GPMPC” approach. Those results all

demonstrate an approximately equal performance when we use proposed algorithms in

the “Lorenz” trajectory tracking problem. However, to obtain approximately equal 180

controls in this simulation, “GPMPC” approach requires over 37 seconds while “Grad-

based GPMPC” only takes approximately 16 seconds. This again demonstrates that

57

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

0 50 100 150 200 250
−0.4

−0.2

0

0.2

0.4

v
a
ri
a
n
c
e
s
 o

n
 x

1

0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

v
a
ri
a
n
c
e
s
 o

n
 x

2

sample time k

Grad−based GPMPC

GPMPC

4.5.a: “Duffing” Trajectory

0 50 100 150 200 250
−0.4

−0.2

0

0.2

0.4

v
a
ri
a
n
c
e
s
 o

n
 x

1

0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

v
a
ri
a
n
c
e
s
 o

n
 x

2

sample time k

Grad−based GPMPC

GPMPC

4.5.b: “Lorenz” Trajectory

Figure 4.5: Uncertainty propagation over the sampling time in the trajectory tracking
problems of the LTV system

“Grad-based GPMPC” outperforms than “GPMPC” with respect to the computational

efficiency.

4.2.3 Numerical Simulations of NLTV System

The nonlinear system in Section 3.3 are used as the NLTV numerical example here.

“Curve” Trajectory

In the first simulation, we use the same time-varying parameters defined in (3.18) to

track the “Curve” trajectory given in (3.20) in Section 3.3.

Again, to collect the observations, we first perform the “Curve” trajectory tracking

task on the deterministic system (3.17) by using the classical Nonlinear Model Predictive

Control (NMPC) [126]. The simulation results also are used as a reference when we

discuss the control performance. Consequently, the 160 observations including states

and controls are collected in the range of [0, 6π]. We use 140 and all of them to train and

test GP models. As a result, it takes approximately 1.4 seconds to learn all separate GP

models. In addition, the training MSE is 4.3360×10−5, while the testing MSE is 3.2930×
10−4. These results demonstrate a well modelling performance of using GP models. The

58

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

0 20 40 60 80 100 120 140
−0.01

0

0.01

Y
1(k

)

"Curve" Trajectory −− Traning Errors
Traning Size = 140

0 20 40 60 80 100 120 140
−5

0

5

10
x 10−3

Y
2(k

)

sample time k

4.6.a: Learning Errors

0 20 40 60 80 100 120 140 160
−0.08

−0.06

−0.04

−0.02

0

0.02

Y
1(k

)

"Curve" Trajectory −− Testing Errors
Testing Size = 160

0 20 40 60 80 100 120 140 160
−0.02

0

0.02

Y
2(k

)

sample time k

4.6.b: Testing Errors

Figure 4.6: GP Modelling results of unknown NLTV system in the “Curve” trajectory
tracking problem

learned hyperparameters are given as follows,

θ1 = [−0.21, 0.62, 1.20, 2.89,−0.52, 0.75,−0.33,−5.47]T
θ2 = [0.10, 5.40, 3.59, 1.33,−0.33, 2.97, 0.55,−6.60]T
θ3 = [0.96, 2.75,−0.04, 1.47, 3.49,−0.50,−0.17,−5.07]T
θ4 = [3.96, 5.21,−0.41, 3.95, 3.17,−0.36, 0.81,−6.55]T

And the learning and testing errors for the unknown NLTV system over the sampling time

in the “Curve” trajectory tracking problem is given in Figure 4.6.a and 4.6.b, respectively.

Then, the learnt GP models are used in the MPC control problems. Again, the predic-

tion and control horizon both are specified as 1 to make a trade-off of the computational

efficiency and complexity of the problem. In addition, the MPC optimization problem

are solved by using derivative-free approach and proposed gradient-based algorithm.

The simulation results of the “Curve” trajectory tracking problem are given in Figure

(4.7.a) and (4.7.b). The control inputs of using NMPC are denoted as “NMPC” in the

figures. By using the exact system model, “NMPC” can produce controlled outputs that

closely follow the desired trajectory. The overall tracking MSE of “NMPC” is 0.0063

on y1 and 0.0093 on y2. The proposed “GPMPC” and “Grad-based GPMPC” perform

equally well when the unknown system is learnt by GP models. As shown in Figure

(4.7.a), controlled outputs of the proposed algorithms closely follow the trajectory as

well. The obtained tracking MSE values are even better. They are 0.0045 and 0.0057

59

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

y 1(k
)

0 20 40 60 80 100 120 140 160
−1

−0.5

0

0.5

1

y 2(k
)

sample time k

Reference
NMPC
GPMPC
Grad−based GPMPC

4.7.a: Controlled States

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

u 1(k
)

0 20 40 60 80 100 120 140 160
−1

−0.5

0

0.5

u 2(k
)

sample time k

NMPC
GPMPC
Grad−based GPMPC

4.7.b: Control Inputs

Figure 4.7: Simulation results of using GP based MPC in the “Curve” trajectory tracking
problem

when using “GPMPC”, and 0.0055 and 0.0060 when using “Grad-based GPMPC” on y1

and y2, respectively. The obtained control inputs in this simulation are given in Figure

(4.7.b).

In addition, Figure (4.10.a) shows the propagated uncertainties in this simulation,

where higher variance values denote less beliefs on model predictions. This also indicates

the quality of learned models during the policy planning process.

4.2.4 “Lorenz” Trajectory

The second simulation involves tracking a “Lorenz” trajectory (shown as red dotted lines

in Figure (4.9.a)). The time-varying parameters are specified by,

a(k) = 10 + 0.5 sin(k) (4.26a)

b(k) = 10/(1 + exp(−0.05k)) (4.26b)

In the second “Lorenz” tracking problem, we collect 189 state-control observations. To

learn GP models, 170 and all of them are used for training and testing, respectively. The

overall learning process takes approximately 1.7 seconds. Consequently, we obtain 0.0398

training and 0.3356 testing MSE values. This shows the good modelling performance of

60

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

0 20 40 60 80 100 120 140 160
−0.05

0

0.05

Y
1(k

)

"Curve" Trajectory −− Traning Errors
Traning Size = 170

0 20 40 60 80 100 120 140 160
−0.2

−0.1

0

0.1

0.2

Y
2(k

)

sample time k

4.8.a: Learning Errors

0 20 40 60 80 100 120 140 160 180
−0.05

0

0.05

Y
1(k

)

"Curve" Trajectory −− Testing Errors
Testing Size = 189

0 20 40 60 80 100 120 140 160 180
−2

−1

0

1

2

Y
2(k

)

sample time k

4.8.b: Testing Errors

Figure 4.8: GP Modelling results of unknown NLTV system in the “Lorenz” trajectory
tracking problem

using GP models again. The learned hyperparameters are given by

θ1 = [1.37, 2.94, 5.32, 5.83, 4.76, 5.41, 1.68,−4.01]T
θ2 = [1.91, 3.69, 5.64, 4.41, 0.17, 2.23, 2.71,−2.85]T
θ3 = [3.66, 2.72, 2.39, 3.01, 1.98, 1.99, 1.61,−4.72]T
θ4 = [3.27, 3.07, 4.33, 3.80, 4.55, 2.45, 3.83,−2.06]T

Figure 4.8.a and 4.8.b give the learning and testing errors for the unknown NLTV system

over the sampling time in the “Lorenz” trajectory tracking problem, respectively.

In the “Lorenz” trajectory tracking problem, the two proposed algorithms perform

good control abilities as well. As shown in Figure (4.9.a), the controlled outputs y1 and

y2 again are closed to the desired trajectory and results of “NMPC”. The corresponding

tracking MSE are 1.2274 and 1.0071 when using “PMPC”, and 1.0175 and 1.4039 when

using “G-PMPC”, compared to 1.2274 and 1.0071 of “NMPC”. The control actions of

using these three methods in the “Lorenz” tracking problem are given in Figure (4.9.b).

The propagated uncertainty in this simulation is given in Figure 4.10.b.

Computational Efficiency

The benefit of using the proposed gradient based solution to the optimization problem is

validated by the following comparison. In the “Curve” simulation. “GPMPC” requires

61

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

0 20 40 60 80 100 120 140 160 180
−20

−10

0

10

20

y 1(k
)

0 20 40 60 80 100 120 140 160 180
−20

−10

0

10

20

y 2(k
)

sample time k

Reference
NMPC
GPMPC
Grad−based GPMPC

4.9.a: Controlled States

0 20 40 60 80 100 120 140 160 180
−6

−4

−2

0

2

4

u 1(k
)

0 20 40 60 80 100 120 140 160 180
−10

−5

0

5

10

u 2(k
)

sample time k

NMPC
GPMPC
Grad−based GPMPC

4.9.b: Control Inputs

Figure 4.9: Simulation results of using GP based MPC in the “Lorenz” trajectory tracking
problem

0 20 40 60 80 100 120 140 160
−4

−2

0

2

4
x 10−3

va
ria

nc
es

 o
n

y 1(k
)

0 20 40 60 80 100 120 140 160
−2

−1

0

1

2
x 10−3

va
ria

nc
es

 o
n

y 2(k
)

sample time k

Grad−based GPMPC
GPMPC

4.10.a: “Curve” Trajectory

0 20 40 60 80 100 120 140 160 180
−2

−1

0

1

2

va
ria

nc
es

 o
n

y 1(k
)

0 20 40 60 80 100 120 140 160 180
−10

−5

0

5

10

va
ria

nc
es

 o
n

y 2(k
)

sample time k

Grad−based GPMPC
GPMPC

4.10.b: “Lorenz” Trajectory

Figure 4.10: Uncertainty propagation over the sampling time in the trajectory tracking
problems of the NLTV system

over 70 seconds to iteratively obtain 160 control actions, while it only takes approxi-

mately 35 seconds when using “Grad-based GPMPC”. Similarly, to obtain 189 control

inputs in the “Lorenz” trajectory tracking problem, it takes over 130 seconds when us-

ing “GPMPC”, and approximately requires only 71 seconds when using “Grad-based

GPMPC”. This comparison demonstrates a significant improvement on computational

efficiency when using the analytical gradients.

62

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

4.3 Conclusion

The GP based MPC strategy is proposed to handle the unconstrained control problem

of unknown systems. The proposed algorithm allows directly taking model uncertainties

naturally obtained during GP model predictions into account when computing the MPC

control inputs. This essentially reduces the computational burdens of most existing

probabilistic model based Stochastic Model Predictive Control (SMPC) approaches. In

addition, through using analytical gradients that are available when using GP models,

the optimization problem is solved more efficiently compared with derivative-free so-

lutions. The simulation results on the trajectory tracking problem of numerical LTV

and NLTV systems demonstrate good modelling and control performances of the pro-

posed GP based MPC, as well as the computational efficiency of proposed gradient based

optimization algorithm.

63

Chapter 4. Unconstrained Model Predictive Control Using Gaussian Process Models

64

Chapter 5

Constrained Model Predictive
Control Using Gaussian Process
Models

The proposed GP based MPC approach in Chapter 4 is only for unconstrained problems.

In this chapter, two GP based MPC algorithms GPMPC1 and GPMPC2 are proposed

where there are input and state constraints. The constrained GP based SMPC problem

is first formulated so that the GP variances are directly included in the cost function.

Then the constrained stochastic problem is relaxed to a deterministic one by specifying

the confidence level. In the GPMPC1 algorithm, the resulting nonlinear MPC problem

is usually non-convex, and solved by using a Sequential Quadratic Programming (SQP)

based method and the basic GP based local model in this paper. Similar to commonly

used methods in [21, 99], the GP variances are considered as a slack variable in the state

constraints. The nonlinear MPC problem is further reformulated to a convex optimization

problem in the GPMPC2 algorithm by using the extended GP based local model. The

resulting MPC problem is efficiently solved by using an active-set method in this paper.

The proposed GP based local dynamical models are presented in Section 5.1, and the

proposed GP based MPC algorithms GPMPC1 and GPMPC2 are presented in Section 5.2

and 5.3 respectively. The stability of the proposed algorithms are analysed in Section 5.4.

The simulation results on the trajectory tracking problems of numerical nonlinear systems

in Section 5.5 demonstrate the performance of the proposed algorithms.

65

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

5.1 GP Based Local Dynamical Models

When dealing with the control of nonlinear systems, it is common practice to obtain local

linearized models of the system around operating points. The main purpose is to reduce

the computation burden involved in the nonlinear control problem. The difference here is

that the model of the system is probabilistic rather than deterministic. There are many

alternate ways by which a GP model could be linearized.

In [101], a GP based local dynamical model allows standard robust control methods

to be used on the partially unknown system directly. Another GP based local dynamical

model is proposed in [114] to integrate GP model with dynamic programming. In these

two cases, the nonlinear optimization problems considered are unconstrained.

In this section, we shall present two different GP based local models. They will be

applied to the constrained nonlinear problems presented in Section 5.2 and 5.3, respec-

tively.

5.1.1 Basic GP based Local Model

Linearization can be done based on the mean values in the GP model. In this case we

replace the state vector xk by its mean μk. Then (4.1) becomes

μk+1 = F(μk,uk) (5.1)

Let (μ∗
k,u

∗
k) be the operating point at which the linearized model is to be obtained.

Given that Δμk = μk − μ∗
k and Δuk = uk − u∗

k are small, from 5.1, we have

Δμk+1 =
∂F
∂μk

Δμk +
∂F
∂uk

Δuk (5.2a)

=
∂μk+1

∂μk

Δμk +
∂μk+1

∂uk
Δuk (5.2b)

66

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

where
∂μk+1

∂μk

and
∂μk+1

∂uk
are the Jacobian state and input matrices respectively. Using

the chain rule, we get

∂μk+1

∂μk

=
∂μk+1

∂μ̃k

∂μ̃k

∂μk

+
∂μk+1

∂Σ̃k

∂Σ̃k

∂μk

(5.3a)

∂μk+1

∂uk
=
∂μk+1

∂μ̃k

∂μ̃k

∂uk
+
∂μk+1

∂Σ̃k

∂Σ̃k

∂uk
(5.3b)

where
∂μ̃k

∂μk

,
∂Σ̃k

∂μk

,
∂μ̃k

∂uk
,
∂Σ̃k

∂uk
can be easily obtained based on (4.7). Elaborations of

∂μk+1

∂μ̃k

and
∂μk+1

∂Σ̃k

can be found in Appendix C.

5.1.2 Extended GP based Local Model

Model uncertainties are characterized by the variances. However, the basic local model

derived above only involves the mean values. The extended local model aims to take into

account model uncertainties. Similar to what we have done to derive the basic model,

we replace the state vector xk in (4.1) by sk = [μk,vec(
√
Σk)]

T ∈ R
n+n2

which shall be

known as the “extended state”. Here, vec(·) denotes the vectorization of a matrix 1.

Hence (4.1) becomes

sk+1 = F ′ (sk,uk) (5.4)

Linearizing at the operating point (s∗k,u
∗
k) where s

∗
k = [μ∗

k,vec(
√
Σ∗
k)]

T , we have

Δsk+1 =
∂F ′

∂sk
Δsk +

∂F ′

∂uk
Δuk (5.5)

Here, Δsk = sk − s∗k and Δuk = uk − u∗
k. The Jacobian matrices are

∂F ′

∂sk
=

⎡
⎢⎢⎣

∂μk+1

∂μk

∂μk+1

∂
√
Σk

∂
√
Σk+1

∂μk

∂
√
Σk+1

∂
√
Σk

⎤
⎥⎥⎦ ∈ R

(n+n2)×(n+n2) (5.6a)

∂F ′

∂uk
=

⎡
⎢⎣

∂μk+1

∂uk
∂
√
Σk+1

∂uk

⎤
⎥⎦ ∈ R

(n+n2)×m (5.6b)

1Σk is a real symmetric matrix therefore can be diagonalized. The square root of a diagonal matrix
can simply be obtained by computing the square roots of diagonal entries.

67

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

with the entries given by

∂μk+1

∂
√
Σk

=
∂μk+1

∂Σk

∂Σk

∂
√
Σk

(5.7a)

∂
√
Σk+1

∂μk

=
∂
√
Σk+1

∂Σk+1

∂Σk+1

∂μk

(5.7b)

∂
√
Σk+1

∂
√
Σk

=
∂
√
Σk+1

∂Σk+1

∂Σk+1

∂Σk

∂Σk

∂
√
Σk

(5.7c)

∂
√
Σk+1

∂uk
=
∂
√
Σk+1

∂Σk+1

∂Σk+1

∂uk
(5.7d)

Since
∂
√
Σk

∂Σk

=
1

2
√
Σk

and
∂
√
Σk+1

∂Σk+1

=
1

2
√
Σk+1

, they can be expressed as

∂μk+1

∂Σk

=
∂μk+1

∂μ̃k

∂μ̃k

∂Σk

+
∂μk+1

∂Σ̃k

∂Σ̃k

∂Σk

(5.8a)

∂Σk+1

∂μk

=
∂Σk+1

∂μ̃k

∂μ̃k

∂μk

+
∂Σk+1

∂Σ̃k

∂Σ̃k

∂μk

(5.8b)

∂Σk+1

∂Σk

=
∂Σk+1

∂μ̃k

∂μ̃k

∂Σk

+
∂Σk+1

∂Σ̃k

∂Σ̃k

∂Σk

(5.8c)

∂Σk+1

∂uk
=
∂Σk+1

∂μ̃k

∂μ̃k

∂uk
+
∂Σk+1

∂Σ̃k

∂Σ̃k

∂uk
(5.8d)

∂μ̃k

∂Σk

and
∂Σ̃k

∂Σk

can be easily obtained based on (4.7). Elaborations of
∂Σk+1

∂μ̃k

and
∂Σk+1

∂Σ̃k
can be found in Appendix C.

5.2 GPMPC1 Algorithm

5.2.1 MPC Trajectory Tracking Problem Formulation

A discrete-time nonlinear dynamical system defined by (4.1) is required to track a tra-

jectory given by {rk} for k = 1, 2, · · · . Using MPC with a prediction horizon H ≥ 1, the

68

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

optimal control sequence can be obtained by solving the following problem:

V∗
k = min

u(·)
J (xk,uk−1, rk) (5.9a)

s.t. xk+i|k = f(xk+i−1|k,uk+i−1) (5.9b)

xmin ≤ xk+i|k ≤ xmax (5.9c)

umin ≤ uk+i−1 ≤ umax (5.9d)

i = 1, · · · , H

where only the first control action uk of the resulting control sequence u(·) = [uk, · · · ,uk+H−1]
T

is applied to the system at time k. xmin ≤ xmax and umin ≤ umax are the upper and lower

bounds of the system states and control inputs, respectively.

In the rest of this chapter, the cost function J (xk,uk−1, rk) shall be rewritten as

J (xk,uk−1) for brevity. The quadratic cost function given by

J (xk,uk−1) =
H∑
i=1

{∥∥xk+i − rk+i
∥∥2

Q
+

∥∥uk+i−1

∥∥2

R

}
(5.10)

will be used. Here,
∥∥ ·∥∥

Q
and

∥∥ ·∥∥
R
denote the two 2-norms weighted by positive definite

matrices Q ∈ R
n×n and R ∈ R

m×m respectively. The control horizon will be assumed to

be equal to the prediction horizon.

5.2.2 Problem Reformulation based on GP

We assume that the system function f(·) is unknown and it is replaced by a GP model.

Consequently, problem (5.9) becomes a stochastic one [117],

V∗
k = min

u(·)
E
[J (xk,uk−1)

]
(5.11a)

s.t. p(xk+1|xk) ∼ N (μk+1,Σk+1) (5.11b)

umin ≤ uk+i−1 ≤ umax (5.11c)

p
{
xk+i|k ≥ xmin

} ≥ η (5.11d)

p
{
xk+i|k ≤ xmax

} ≥ η (5.11e)

69

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

where η denotes a confidence level. For η = 0.95, the chance constraints (5.11d) and

(5.11e) are equivalent to

μk+i − 2Σk+i ≥ xmin (5.12a)

μk+i + 2Σk+i ≤ xmax (5.12b)

Using (5.10) as the cost function, we get

E
[J (xk,uk−1)

]
= E

[H∑
i=1

{∥∥xk+i − rk+i
∥∥2

Q
+

∥∥uk+i−1

∥∥2

R
}
]

=
H∑
i=1

E
[∥∥xk+i − rk+i

∥∥2

Q
+

∥∥uk+i−1

∥∥2

R

]

=
H∑
i=1

{
E
[∥∥xk+i − rk+i

∥∥2

Q

]
+ E

[∥∥uk+i−1

∥∥2

R

]}
(5.13)

In practice, the controls are deterministic. Hence, E
[
u2
k

]
= u2

k and (5.13) becomes

E
[J (xk,uk−1)

]
=

H∑
i=1

{∥∥μk+i − rk+i
∥∥2

Q
+

∥∥uk+i−1

∥∥2

R
+ trace

(
QΣk+i

)}
=h (μk,uk−1)

(5.14)

Now we have a deterministic cost function which involve the model variance Σ which

allows model uncertainties to be explicitly included in the computation of the optimized

controls.

5.2.3 Nonlinear Optimization Solution

With the cost function (5.13) and the state constraints (5.12), the original stochastic

optimization problem (5.11) has been relaxed to a deterministic nonlinear optimization

problem. But it is typically non-convex. This is usually solved by derivative-based

approaches, such as Lagrange multipliers [127] which is based on first-order derivatives

(gradient), and SQP and interior-point algorithms based on second-order derivatives

(Hessians matrix) [128]. When the derivative of the cost function is unavailable or is too

difficult to compute, it could be approximated iteratively by a sampling method [129,

70

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

130]. Alternatively, evolutionary algorithms, such as PSO [131] and Genetic Algorithm

(GA) [132], could be used to solve the problem. This approach is able to handle general

constrained optimization problems. However, there is no guarantee that the solutions

obtained are near optimum. A review of nonlinear optimization techniques for the MPC

problem can be found in [128].

In this section, the constrained nonlinear optimization problem (5.11) is solved by

using the Feasibility-Perturbed Sequential Quadratic Programming (FP-SQP) algorithm

proposed in [133], where a sequence of iterates can be generated by solving the trust-

region SQP sub-problem at each iteration, and the feasibility of each iterate is retained

by perturbing the resulting step. One benefit of using this algorithm is the SQP sub-

problems can be guaranteed feasible by using the proper trust-regions. In addition, this

algorithm allows simply using the objective function as the merit that typically consist

of the constraint violations with estimated Lagrange multipliers besides the objective

function. Finally, the FP-SQP algorithm is defined with proved local and global conver-

gences.

Considering the following general form of a constrained nonlinear optimization prob-

lem:

min
z
h(z) z ∈ R

n+m (5.15a)

s.t. c(z) = 0 (5.15b)

d(z) ≤ 0 (5.15c)

where h : Rn+m → R is the objective function, c : Rn+m → R
n and d : Rn+m → R

n+m

represents the corresponding equality and inequality constraints, respectively. FP-SQP

generates a sequence of feasible solutions {zj}j=0,1,2,··· by splitting the original problem

into several Quadratic Programming (QP) sub-problems. In particular, a step Δzj from

current iterate zj to the next one zj+1 can be obtained by solving the following QP

subproblem:

min
Δzj

�h(zj)TΔzj + 1

2
Δzj

T
HjΔzj (5.16a)

s.t. c(zj) + �c(zj)TΔzj = 0 (5.16b)

d(zj) + �d(zj)TΔzj ≤ 0 (5.16c)

71

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

under the trust-region constraint ∥∥Δzj∥∥ ≤ γj (5.17)

where �h(·) denotes the first-order derivative of the objective function at zj, �c(·) and
�d(·) are two linearised Jacobian matrices at the zj. The matrix Hj ∈ R

(n+m)×(n+m) is

an exact or approximated Lagrangian Hessian matrix and γj represents the trust-region

radius. To guarantee the feasibility of Δzj, its corresponding perturbation Δz̃j which

satisfies the following conditions need to be computed:

zj +Δz̃j ∈ Π (5.18a)

1

2
‖Δz‖2 ≤

∥∥∥Δ̃z∥∥∥
2
≤ 3

2
‖Δz‖2 (5.18b)

where Π denotes the feasible points set of problem (5.15). A method to obtain such a

perturbation is proposed in [134]. An acceptability value of Δzj defined by:

ρj =
h(zj+1)− h(zj)

−�h(zj)TΔzj − 1
2
ΔzjTHjΔzj

(5.19)

If this value is not acceptable, then the trust-region radius γj will need to be adjusted.

An adaptive method to adjust γj can be found in [135]. The complete FP-SQP algorithm

is described in Algorithm 6.

5.2.4 Application to GPMPC1

Applying FP-SQP to the GPMPC1 problem (5.11), it should be noted that the con-

straints (5.12) are linear. Therefore it is possible to simply use Δz̃j = Δzj. The next

iterate then can be obtained by

zj+1 = zj +Δzj (5.20)

Expressing the cost function (5.14) as (5.15a), define zk = [μT
k ,u

T
k−1]

T ∈ R
n+m.

Hence,

h(zk) =
H∑
i=1

{
zTk+i

[
Q 0
0 R

]
zk+i + trace

{
QΣk+i

}}
(5.21)

One key issue in using FP-SQP is the local linearisation at Δzj. The basic GP based

72

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

1 Initialization
feasible point z0 ∈ Π,
Hessian matrix H0,
trust region upper bound γmax > 0,
initial trust region radius γ0 = ‖�h(z0)‖
τ = 0, 0 < τ1 < τ2 < 1

2 for j = 0, 1, 2, · · · , J <∞ do
3 Obtain step Δzj by solving the problem (5.16);

4 if �h(zj)TΔzj + 1

2
Δzj

T
HjΔzj = 0 then

5 Stop;
6 else
7 Update ρj by using (5.19);

8 Update zj+1, τ :

zj+1 =
{ zj +Δzj, ρj ≥ τ1
zj, otherwise

τ = {
‖Δzj‖

‖�h(zj+1)− h(zj)‖ , ρj ≥ τ1

τ/4, otherwise

9 Update trust region radius:

γj+1 = { min
{
τ‖�h(zj+1)‖, γmax

}
, ρj ≥ τ2

τ‖�h(zj+1)‖, otherwise

10 Update Hessian matrix Hj+1 by using (5.24);
11 j = j + 1;

12 end

13 end
Algorithm 6: The Feasibility-Perturbed Sequential Quadratic Programming used in
the GPMPC1 algorithm

local model derived in Section 5.1 shall be used to derive the QP subproblem as,

min
Δzk,ΔΣk

H∑
i=1

{ ∂h

∂zk+i
Δzk+i +

1

2
ΔzTk+iHkΔzk+i (5.22a)

+ trace
{
Q(Σk+i +ΔΣk+i)

}}
(5.22b)

s.t. Δμk+i+1 = Ak+iΔμk+i +Bk+iΔuk+i (5.22c)

umin ≤ uk+i +Δuk+i ≤ umax (5.22d)

μk+i +Δμk+i − 2(Σk+i +ΔΣk+i) ≥ xmin (5.22e)

μk+i +Δμk+i + 2(Σk+i +ΔΣk+i) ≤ xmax (5.22f)

‖Δzk+i‖ ≤ γ (5.22g)73

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

Note that Ak+i =
∂μk+i+1

∂μk+i

and Bk+i =
∂μk+i+1

∂uk+i
are the two Jacobian matrices of the

basic GP based local model (5.1).

The computation of the Hessian matrix Hk of the Lagrangian in (5.16) is another key

issue when using the FP-SQP algorithm. The exact Hessian matrix is usually obtained

by

Hk = �2h(zk) +
n∑
i=1

αi�2c(zk) +
n+m∑
i=1

βi�2d(zk) (5.23)

where α and β are two Lagrange multipliers applied to the equality and the inequality

constraints respectively. This allows rapid local convergence but requires the second-order

derivatives �2c(zk) which are generally not available. When the system is represented by

a GP model, these derivatives are mathematically computable 2 but are computationally

expensive to obtain. In addition, the exact Hessian matrix may be not positive definite. In

our work, Hk is approximately updated by using a Quasi-Newton Hessian approximation

based on the BFGS, which guarantees a convex quadratic problem (5.22). The update

equation is given by

Hk+1 = Hk − HkΔzkΔz
T
kHk

ΔzTkHkΔzk
+

yky
T
k

yTkΔzk
(5.24)

where Δzk = zk+1 − zk and yk = μk+1 − μk.

5.3 GPMPC2 Algorithm

GPMPC1 introduced in the last section has two main disadvantages. First, model un-

certainty was introduced through the variance term into the objective function in (5.14).

But this is an indirect way to handle model uncertainties. A more direct approach is to

introduce the variance into that state variable. This can be done through the use of the

extended GP based local model (5.5). In this way, the variances are directly handled in

the optimization process.

Another disadvantage of GPMPC1 is that the MPC optimization problem (5.9) is

non-convex. Due to the recursive nature of SQP optimizations, the process could be

time consuming. With GPMPC2, the non-convex problem is relaxed to a convex one,

2As shown in [113], the first-order derivatives are functions of μ̃ and Σ̃, the second-order derivatives
therefore can be obtained by using the chain-rule.

74

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

making it much easier to solve. Sensitivity to initial conditions is reduced and in most

cases exact solutions can be obtained [128]. This convex optimization problem can be

solved offline by using Multi-Parametric Quadratic Programs (mp-QP) [136] where the

explicit solutions are computed as a lookup table of nonlinear controllers. An example

can be found in [99]. However, the size of the table grows exponentially with the number

of states. Hence it is only suitable for problems with less than 5 states [137]. Using the

extended GP based local model (5.5), the problem can be solved efficiently by an online

active-set algorithm.

5.3.1 Problem Reformulation using Extended GP Local Model

Based on the extended local model (5.5) in Section 5.1, define the state variable as

Zk+1 =
[
sk+1|k, · · · , sk+H|k

]T ∈ R
H(n+n2)

= [μk+1,
√
Σk+1, · · · ,μk+H ,

√
Σk+H]

T (5.25)

Also, let

Uk = [uk, · · · ,uk+H−1]
T ∈ R

Hm (5.26)

r∗k+1 = [rk+1,0, · · · , rk+H ,0]T ∈ R
H(n+n2) (5.27)

Problem (5.11) then becomes

min
U

{∥∥Zk+1 − r∗k+1

∥∥2

Q̃
+ ‖Uk+1‖2R̃

}
(5.28a)

s.t. IHnxmin ≤MzZk+1 ≤ IHnxmax (5.28b)

IHmumin ≤ Uk+1 ≤ IHmumax (5.28c)

where Q̃ = diag{[Q, diag{vec(Q)}, · · · ,Q, diag{vec(Q)}]} ∈ R
H(n+n2)×H(n+n2), R̃ =

diag{[R, · · · ,R]} ∈ R
Hm×Hm, Ia ∈ R

a is the identity vector, and

Mz =

⎡
⎢⎢⎢⎣
ITn 2ITn2 0 0 · · · 0
0 0 ITn 2ITn2 · · · 0
...

...
...

...
...

...
0 0 0 · · · ITn 2ITn2

⎤
⎥⎥⎥⎦ ∈ R

H×H(n+n2) (5.29)

Let Tu ∈ R
Hm×Hm be a lower triangular matrices with unit entries. Then,

Uk = IHmuk−1 +TuΔUk (5.30)

75

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

ΔZk+1 can be expressed as

ΔZk+1 = ÃΔsk + B̃ΔUk (5.31)

based on the extended local model, with the state and control matrices given by

Ã =
[
A,A2, · · · ,AH

]T ∈ R
H(n+n2) (5.32a)

B̃ =

⎡
⎢⎢⎢⎣

B 0 · · · 0
AB B · · · 0
...

...
...

...
AH−1B AH−2B · · · B

⎤
⎥⎥⎥⎦ ∈ R

H(n+n2)×Hm (5.32b)

where A and B are the two Jacobian matrices (5.6) and (5.7) respectively. The corre-

sponding state variables Zk+1 is therefore obtained by,

Zk+1 = sk +Tz

(
ÃΔsk + B̃ΔUk

)
(5.33)

where Tz ∈ R
H(n+n2)×H(n+n2) denotes a lower triangular matrix with unit entries.

Then, based on the (5.30) and (5.33), the problem (5.28) can be expressed in a more

compact form as

min
ΔU

1

2
‖ΔUk‖2Φ +ψTΔUk +C (5.34a)

s.t. ΔUmin ≤
[
Tu

TzB̃

]
ΔUk ≤ ΔUmax (5.34b)

where

Φ =B̃TTT
z Q̃TzB̃+TT

u R̃Tu ∈ R
Hm×Hm (5.35a)

ψ =2(skQ̃TzB̃+ΔskÃ
T Q̃B̃− r∗k+1Q̃TzB̃+ uk−1R̃Tu) ∈ R

Hm (5.35b)

C =(s2k + r
∗
k+1)Q̃+ 2skΔskQ̃TzÃ+Δs2kÃ

T Q̃Ã (5.35c)

− 2r∗k+1(skQ̃−ΔskQ̃TzÃ) + u
2
k−1R̃ (5.35d)

ΔUmin =

[
IHm(umin − uk−1)

IH(n+n2)(xmin − sk −TzÃΔsk)

]
(5.35e)

ΔUmax =

[
IHm(umax − uk−1)

IH(n+n2)(xmax − sk −TzÃΔsk)

]
(5.35f)

Since Q̃, R̃,Tz and Tu are positive definite, Φ is also positive definite. Hence (5.34) is

a constrained QP problem and is strictly convex. The solution will therefore be unique

76

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

1 Initialization
the feasible point ΔU0

k ∈ ΠΔU;
the working set W0 = A(ΔU0

k);

2 for j = 0, 1, 2, · · · do
3 Compute the δj and λ∗

k by solving the linear equations (5.42);

4 if δj = 0 then
5 λ∗k = min

i∈Wj
k∩I

λ∗
k,i,

6 p = argmin
i∈Wj

k∩I
λ∗
k,i

7 if λ∗k ≥ 0 then

8 ΔU∗
k = ΔUj

k;
9 Stop.

10 else

11 Wj+1
k = Wj

k \ p;
12 ΔUj+1

k = ΔUj
k;

13 end

14 else
15 Compute the step length κj by (5.46),

16 q = argmin
i∈B(ΔUj

k)

Δ̃U,i − G̃iΔU
j
k

G̃iδj

17 if κj < 1 then

18 ΔUj+1
k = ΔUj

k + κjδj;

19 A(ΔUj+1
k) = A(ΔUj

k) ∪ q;
20 else

21 ΔUj+1
k = ΔUj

k + δj;

22 A(ΔUj+1
k) = A(ΔUj

k);

23 end

24 end

25 end
Algorithm 7: Active set method for solving the GPMPC2 problem

and satisfies the Karush-Kahn-Tucker (KKT) conditions (see Appendix E).

5.3.2 Quadratic Programming Solution

The optimization problem (5.34) can be solved by an active-set method proposed in [138].

It iteratively seeks an active (or working) set of constraints and solve an equality con-

strained QP problem until the optimal solution is found. The advantage of this method

77

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

is that accurate solutions can still be obtained even when they may be ill-conditioning

or degenerated. In addition, it is conceptually simple and easy to implement. We also

use a warm-start technique to accelerate the optimization process substantially.

Let G = [Tu,TzB̃]
T , the constraint (5.34b) can be written as[

G
−G

]
ΔU ≤

[
ΔUmax

−ΔUmin

]
(5.36)

Ignoring the constant term C, problem (5.34) becomes

min
ΔU

1

2
‖ΔUk‖2Φ +ψTΔUk (5.37a)

s.t. G̃ΔUk ≤ Δ̃U (5.37b)

where G̃ = [G,−G]T ∈ R
2H(m+n+n2)×Hm and Δ̃U = [ΔUmax,−ΔUmin]

T ∈ R
2H(m+n+n2).

Let ΠΔU be the set of feasible points, and I = {1, · · · , 2H(m + n + n2)} be the

constraint index set. For a feasible point ΔU∗
k ∈ ΠΔU, the index set for the active set of

constraints is defined as

A(ΔU∗
k) = {i ⊆ I|G̃iΔU

∗
k = Δ̃U,i} (5.38)

where G̃i is the i
th row of G̃ and Δ̃U,i is the i

th row of the Δ̃U. The inactive set is

therefore given by
B(ΔU∗

k) = I \ A(ΔU∗
k)

= {i ⊆ I|G̃iΔU
∗
k < Δ̃U,i}

(5.39)

Given any iteration j, the working set Wj
k contains all the equality constraints plus the

inequality constraints in the active set. The following QP problem subject to the equality

constraints w.r.t. Wj
k is considered given the feasible points ΔU

j
k ∈ ΠΔU:

min
δj

1

2

∥∥ΔUj
k + δj

∥∥2

Φ
+ψT (ΔUj

k + δj) (5.40a)

=min
δj

1

2

∥∥δj∥∥2

Φ
+ (ψ +ΦΔUj

k)
Tδj (5.40b)

+
1

2

∥∥ΔUj
k

∥∥2

Φ
+ψTΔUj

k︸ ︷︷ ︸
constant

s.t. G̃i(ΔU
j
k + δj) = Δ̃U,i, i ∈ Wj

k (5.40c)

78

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

This problem can be simplified by ignoring the constant term to:

min
δj

1

2

∥∥δj∥∥2

Φ
+ (ψ +ΦΔUj

k)
Tδj (5.41a)

=min
δj

1

2
δj

T
Φδj + (ψ +ΦΔUj

k)
Tδj (5.41b)

s.t. G̃iδ
j = Δ̃U,i − G̃iΔU

j
k, i ∈ Wj

k (5.41c)

By applying the KKT conditions to problem (5.41), we can obtain the following linear

equations: [
Φ G̃T

A
G̃A 0

]
︸ ︷︷ ︸
Lagrangian Matrix

[
δj

λ∗
k

]
=

[−ψ −ΦΔUj
k

Δ̃U,A − G̃AΔU
j
k

]
(5.42)

where λ∗
k ∈ R

2H(m+n+n2) denotes the vector of Lagrangian multipliers, G̃A ⊆ G̃ and

Δ̃U,A ⊂ Δ̃U are the weighting matrix and the upper bounds of the constraints w.r.t. Wj
k.

Let the inverse of Lagrangian matrix be denoted by[
Φ G̃T

A
G̃A 0

]−1

=

[
L1 LT2
L2 L3

]
(5.43)

If this inverse exists, then the solution is given by

δj = −L1(ψ +ΦΔUj
k) + L

T
2 (Δ̃U,A − G̃AΔU

j
k) (5.44a)

λ∗
k = −L2(ψ +ΦΔUj

k) + L3(Δ̃U,A − G̃AΔU
j
k) (5.44b)

where

L1 = Φ−1 −Φ−1G̃T
A(G̃AΦ−1G̃T

A)
−1G̃AΦ−1 (5.45a)

L2 = Φ−1G̃T
A(G̃AΦ−1 (5.45b)

L3 = −(G̃AΦ−1G̃T
A)

−1 (5.45c)

If δj �= 0, then the set of feasible points ΔUj
k fails to minimize problem (5.37). In

this case, the next set of feasible point is computed for the next iteration by ΔUj+1
k =

ΔUj
k + κjδj with step size

κj = min

{
1, min

i∈B(ΔUj
k)

Δ̃U,i − G̃iΔU
j
k

G̃iδj

}
(5.46)

79

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

If κj < 1, the inequality constraint with index q = argmin
i∈B(ΔUj

k)

Δ̃U,i − G̃iΔU
j
k

G̃iδj
should be

“activated”, giving the working set Wj+1
k = Wj

k ∪ q. Otherwise, we have Wj+1
k = Wj

k.

Alternatively, if the solution gives δj = 0, then the current feasible points ΔUj
k could

be the optimal solution. This can be verified by checking the Lagrangian multiplier

λ∗k = min
i∈Wj

k∩I
λ∗
k,i. If λ

∗
k ≥ 0, the optimal solution of the (5.37) at sampling time k is found.

Otherwise, this inequality constraint indexed by p = argmin
i∈Wj

k∩I
λ∗
k,i should be removed from

the current working set, giving us Wj+1
k = Wj

k \ p. Algorithm 7 summarizes the active

set algorithm used in the GPMPC2.

Implementation Issues

The key to solving the linear equations (5.42) is the inverse of the Lagrangian matrix.

However, G̃A is not always full ranked. Thus the Lagrangian matrix is not always

invertible. This problem can be solved by decomposing G̃A using QR factorization tech-

nique, giving us GT
A = Q [R 0]T where R ∈ R

m1×m1 is an upper triangular matrix with

m1 = rank(G̃A). Q ∈ R
Hm×Hm is an orthogonal matrix that can be further decomposed

to Q = [Q1 Q2] where Q1 ∈ R
Hm×m1 and Q2 ∈ R

Hm×(Hm−m1). Thus, GT
A = Q = Q1R

and

L1 = Q2(QT
2ΦQ2)

−1QT
2 (5.47a)

L2 = Q1R−1T − L1ΦQ1R−1T (5.47b)

L3 = R−1QT
1ΦL2 (5.47c)

The second issue relates to using the appropriate warm-start technique to improve

the convergence rate of the active-set method. For GPMPC2, since the changes in the

state between two successive sampling instants are usually quite small, we simply use

the previous ΔU∗
k as the starting point ΔU

0
k+1 for the next sampling time k + 1. This

warm-start technique is usually employed in MPC optimizations because of its proven

effectiveness [137].

80

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

5.4 Stability Analysis

The stability of the closed-loop controller is not guaranteed because the MPC problem is

open-loop. This can be demonstrated by the stability analysis of the proposed algorithms.

In particular, for the MPC problem (5.9) in the GPMPC1 algorithm, the objective

(5.10) can be directly used as the Lyapunov function. Therefore, it can be known that

V∗(k) =
H∑
i=1

{∥∥Δμ∗
k+i

∥∥2

Q
+

∥∥u∗
k+i−1

∥∥2

R
+ trace(QΣ∗

k+i)
}

(5.48)

where Δμ∗
k+i = μ∗

k+i−rk+i, u∗ is the optimal control inputs, and μ∗
k+i and Σ

∗
k+i represent

the corresponding optimal means and variances of the GP model at time k. The Lyapunov

function at time k + 1 is subsequently obtained by,

V(k + 1) (5.49a)

=
H∑
i=1

{
‖Δμk+1+i‖2Q + ‖uk+i‖2R + trace(QΣk+1+i)

}
(5.49b)

= V∗(k)− ∥∥Δμ∗
k+1

∥∥2

Q
− ‖u∗

k‖2R − trace(QΣ∗
k+1) (5.49c)

+ ‖Δμk+1+H‖2Q + ‖uk+H‖2R + trace(QΣk+1+H)

It is easy to know that V∗(k + 1) ≤ V(k + 1) due to the nature of the optimization.

Furthermore, the following inequality can be obtained,

V∗(k + 1) ≤V(k + 1) (5.50a)

≤V∗(k) + ‖Δμk+1+H‖2Q (5.50b)

+ ‖uk+H‖2R + trace(QΣk+1+H)

because of
∥∥Δμ∗

k+1

∥∥2

Q
≥ 0, ‖u∗

k‖2R ≥ 0 and trace(QΣ∗
k+1) ≥ 0. The stability result of the

problem (5.28) in the GPMPC2 algorithm can be obtained in the same way.

The result in (5.50) shows that, to guarantee the stability, additional terminal con-

straints on the means and variances of the GP model, as well as the control inputs are

81

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

required such that,

μk+H+1|k − rk+H+1 = 0 (5.51a)

Σk+H+1|k = 0 (5.51b)

uk+H|k = 0 (5.51c)

However, it should be noted that, these newly added constraints altered the optimization

problem. Hence its feasibility will need to be analysed. Another approach to provide

the guaranteed stability is by introducing a terminal cost into the objective function [1].

This issue will be revisited in Chapter 7.

5.5 Simulation Results

The proposed algorithms are applied to three trajectory tracking problems of a MIMO

nonlinear system with time-varying parameters. For each problem, the simulation is

independently repeated 50 times. The average simulation results of the 50 trials are

shown here.

The modelling performance of proposed algorithm is evaluated by computing the

consumed time and training MSE defined as follows,

MSE =
1

N

N∑
k=1

(yk − rk)
2

where N denotes the terminal time index of the tracking problem and is specified as

189 in this section. In addition, the control performance is demonstrated in terms of

computed inputs and outputs, as well as the Integral Absolute Error (IAE) value that

describes the set-point tracking errors over the time. It is defined as follow,

IAE =

∫ N

0

|yk − rk|

Finally, to demonstrate the efficiency of using the GPMPC2 algorithm, the runtime of

solving the MPC optimization problems of using the proposed algorithms is compared.

82

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

5.5.1 Nonlinear Numerical Example

The MIMO nonlinear numerical system adopted from [139] is given as follows,

x1(k + 1) =
x1(k)

2

1 + x1(k)2
+ 0.3x2(k)

x2(k + 1) =
x1(k)

2

1 + x2(k)2 + x3(k)2 + x4(k)2

+ a(k)u1(k)

x3(k + 1) =
x3(k)

2

1 + x3(k)2
+ 0.2x4(k)

x4(k + 1) =
x3(k)

2

1 + x1(k)2 + x2(k)2 + x4(k)2

+ b(k)u2(k)

y1(k + 1) = x1(k + 1) + ω1

y2(k + 1) = x3(k + 1) + ω2

(5.52)

where x1, x2, x3 and x4 are system states, u1, u2 and y1, y2 denote system inputs and

outputs, respectively. ω1, ω2 ∼ N (0, 0.01) denote two Gaussian white noises. In addition,

the time-varying parameters a(k) and b(k) are specified by,

a(k) = 10 + 0.5 sin(k) (5.53a)

b(k) =
10

1 + exp(−0.05k) (5.53b)

The nonlinear numerical system is steer to follow the so called “Step”, “Lorenz” and

“Duffing” trajectories shown as red dots in Figure 5.2.a, 5.3.a and 5.4.a respectively.

The system inputs are subjected to 0.25 ≤ u1(k) ≤ 1.75, 0.5 ≤ u2(k) ≤ 2.5 for the

“Step” trajectory, −4 ≤ u1(k) ≤ 4,−7 ≤ u2(k) ≤ 7 for the “Lorenz” trajectory and

−0.5 ≤ u1(k) ≤ 0.25,−0.5 ≤ u2(k) ≤ 0.2 for the “Duffing” trajectory.

To generate the observations, each trajectory tracking problem is first solved by using

an NMPC strategy proposed in [126]. 189 observations including inputs, states and

outputs are consequently collected and are used to learn the GPmodels for each trajectory

tracking problem.

The MPC parameters in the simulations are given as: initial states x0 = [0, 0, 0, 0]T

and initial control inputs u0 = [0, 0]T , weighting matrix R = diag{[27000, 21000]} and

83

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

0 20 40 60 80 100 120 140 160 180
−2

0

2

4

6

8
x 10−3

Y
1(k

)

"Step" Trajectory −− Traning Errors
Traning Size = 189

0 20 40 60 80 100 120 140 160 180
−0.06

−0.04

−0.02

0

0.02

Y
2(k

)

sample time k

5.1.a: “Step”

0 20 40 60 80 100 120 140 160 180
−0.05

0

0.05

0.1

0.15

Y
1(k

)

"Lorenz" Trajectory −− Traning Errors
Traning Size = 189

0 20 40 60 80 100 120 140 160 180
−0.2

−0.1

0

0.1

0.2

Y
2(k

)

sample time k

5.1.b: “Lorenz”

0 20 40 60 80 100 120 140 160 180
−0.04

−0.02

0

0.02

0.04

Y
1(k

)

"Duffing" Trajectory −− Traning Errors
Traning Size = 189

0 20 40 60 80 100 120 140 160 180
−0.1

0

0.1

0.2

0.3

Y
2(k

)

sample time k

5.1.c: “Duffing”

Figure 5.1: Training errors over the sampling time in the trajectory tracking simulations

Table 5.1: Simulation Results of learning the unknown nonlinear system by using GP
models

Trajectory MSE Values
Approximate Runtime

(seconds)
GP Models RBFN

“Step” 9.9114e-05 2.17 1.67
“Lorenz” 0.0196 1.91 14.1
“Duffing” 0.0012 2.01 6.38

Q = I4×4, sampling frequency fs = 1Hz. In addition, it is required to specify the horizon

H. Theoretically, a long enough H is necessary to guarantee the stability of MPC

controllers. However, the complexity of MPC problem increases exponentially with the

horizon’s growth. Meanwhile, when using the GP models, variances are also propagated

over the horizon. Thus, it is usually proposed to chose the H to make a trade-off between

the control performance and computational complexity. In this section, it is defined that

H = 10.

5.5.2 Unknown System Learning Results

Table 5.1 describes the obtained MSE values of learning the unknown nonlinear system by

using GP models in these three trajectory tracking problems. The corresponding training

errors over the 189 samples are given in Figure 5.1.a, 5.1.b and 5.1.c respectively. These

results show that the nonlinear system (5.52) is accurately learnt by using the GP models

due to small MSE values and tracking errors.

In addition, we compare the runtime required to obtain the equal MSE values when

learning the unknown nonlinear system by using the GP models and Radial Basis Func-

84

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

Y
1(k

)

"Step" Trajectory Tracking

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

Y
2(k

)

sample time k

Reference
NMPC
GPMPC1
GPMPC2

5.2.a: Controlled Outputs

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

u 1(k
)

Control inputs in "Step" Trajectory Tracking

0 20 40 60 80 100 120 140 160 180
0

1

2

3

u 2(k
)

sample time k

NMPC
GPMPC1
GPMPC2

5.2.b: Control Inputs

Figure 5.2: Simulation result of tracking the “Step” trajectory using the proposed algo-
rithms

0 20 40 60 80 100 120 140 160 180
−20

−10

0

10

20

Y
1(k

)

"Lorenz" Trajectory Tracking

0 20 40 60 80 100 120 140 160 180
−20

−10

0

10

20

Y
2(k

)

sample time k

Reference
NMPC
GPMPC1
GPMPC2

5.3.a: Controlled Outputs

0 20 40 60 80 100 120 140 160 180
−6

−4

−2

0

2

4

u 1(k
)

Control inputs in "Lorenz" Trajectory Tracking

0 20 40 60 80 100 120 140 160 180
−10

−5

0

5

10

u 2(k
)

sample time k

NMPC
GPMPC1
GPMPC2

5.3.b: Control Inputs

Figure 5.3: Simulation result of tracking the “Lorenz” trajectory using the proposed
algorithms

tion Network (RBFN), even though the training method and cost function used in these

two approaches are not same. The resultant runtimes are given in Table 5.1. It seems

that the GP models require less runtime to learn the unknown nonlinear system with the

same accuracy than the RBFN.

85

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

0 20 40 60 80 100 120 140 160 180
−2

−1

0

1

2

Y
1(k

)

"Duffing" Trajectory Tracking

0 20 40 60 80 100 120 140 160 180
−1

−0.5

0

0.5

1

Y
2(k

)

sample time k

Reference
NMPC
GPMPC1
GPMPC2

5.4.a: Controlled Outputs

0 20 40 60 80 100 120 140 160 180
−1

−0.5

0

0.5

u 1(k
)

Control inputs in "Duffing" Trajectory Tracking

0 20 40 60 80 100 120 140 160 180
−1

−0.5

0

0.5

u 2(k
)

sample time k

NMPC
GPMPC1
GPMPC2

5.4.b: Control Inputs

Figure 5.4: Simulation result of tracking the “Duffing” trajectory using the proposed
algorithms

5.5.3 Unknown System Control Results

The resultant controlled outputs and control inputs by using the GPMPC1 and GPMPC2

algorithms for the trajectory tracking problems are given in Figure 5.2, 5.3 and 5.4. For

the “Step” and “Lorenz” trajectories, the effectivenesses of both algorithms are obvious

since they both produced outputs closed to the desired ones. In addition, both the

algorithms exhibit equally good control performances in these two trajectory tracking

problems as indicated by the very close control inputs shown in the Figure 5.2.b and 5.3.b.

For the “Duffing” trajectory, the both algorithms are able to produce the controlled

outputs y1(k) overall following the desired ones with constrained control inputs u1(k)

shown in Figure 5.4.a. In addition, the controlled outputs y2(k) have obvious errors to

the desired outputs at the beginning 60 time steps. This is probably due to the control

inputs u2(k) are constrained shown in Figure 5.4.b. The control outputs subsequently

follow the reference closely.

As given in Figure 5.5, the equal control performances of the proposed algorithms

also can be found by comparing the IAE values obtained in the three trajectory tracking

problems.

Table 5.2 approximately compares the GPMPC1 and GPMPC2’s runtime of comput-

ing 189 control inputs in the “Step”, “Lorenz” and “Duffing” trajectories. The results

demonstrate the better efficiency of using GPMPC2 algorithm to deal with the GP

86

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

0 20 40 60 80 100 120 140 160 180
0.2

0.4

0.6

0.8

1

Y
1(k

)

Integral Absolute Error (IAE)
"Step" Trajectory Tracking

0 20 40 60 80 100 120 140 160 180
0.4

0.6

0.8

1

1.2

Y
2(k

)

sample time k

GPMPC1
GPMPC2

5.5.a: “Step”

0 20 40 60 80 100 120 140 160 180
0

50

100

150

Y
1(k

)

Integral Absolute Error (IAE)
"Lorenz" Trajectory Tracking

0 20 40 60 80 100 120 140 160 180
0

50

100

150

Y
2(k

)

sample time k

GPMPC1
GPMPC2

5.5.b: “Lorenz”

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

Y
1(k

)

Integral Absolute Error (IAE)
"Duffing" Trajectory Tracking

0 20 40 60 80 100 120 140 160 180
0

5

10

15

Y
2(k

)

sample time k

GPMPC1
GPMPC2

5.5.c: “Duffing”

Figure 5.5: Integral Absolute Errors (IAE) over the sampling time in the trajectory
tracking simulations

Table 5.2: Runtime required to compute 189 control inputs by using the proposed algo-
rithms in the trajectory tracking simulations

Trajectory Runtime (seconds)
“GPMPC1” “GPMPC2”

“Step” 33.09 5.93
“Lorenz” 30.28 5.11
“Duffing” 27.11 4.86

based MPC optimization problem than the GPMPC1 algorithm.

5.6 Conclusion

Two GP based MPC algorithms GPMPC1 and GPMPC2 are proposed to handle the

trajectory tracking problem of the unknown systems in this chapter. GP models are

used to identify the unknown system offline due to their ability of explicitly evaluating

uncertainties of the obtained model by using GP variances. The general GP based MPC

problem based on GP model is subsequently formulated such that the model uncertainties

are directly included in the cost function. In the GPMPC1 algorithm, this general GP

based MPC problem is originally stochastic but is relaxed to a deterministic non-convex

nonlinear optimization problem through specifying a confidence level. The resultant

problem is subsequently solved effectively by using the FP-SQP method based on the

basic GP based local dynamical model. In addition, by using the extended GP based local

dynamical model, the GPMPC2 algorithm further relaxes the non-convex optimization

problem to a convex one. The simplified question is solved by using the active-set method.

The main difference between the proposed algorithms lies in the way they handle the

87

Chapter 5. Constrained Model Predictive Control Using Gaussian Process Models

model uncertainties. In the GPMPC1 algorithm, model uncertainties are treated as

the slack variables of GP mean constraints and are included in the objective function

as the penalty terms. This is considered as a “soften” technique to the “hard” state

constraints. Another approach is used with the uncertainties is treated as partial entries

of the state vector in the GPMPC2 algorithm. This allows directly dealing with the model

uncertainties when computing the optimized control inputs. Based on the simulation

results, the proposed algorithms perform equally good in the trajectory tracking problem

of the unknown nonlinear system. However, the GPMPC2 algorithm seems superior due

to the shorter time is required in the GP based MPC optimization problems compared

with the GPMPC1 algorithm.

88

Chapter 6

Quadrotor Control using GPMPC

MPC trajectory tracking problem of the quadrotor is studied in this chapter. The trans-

lational and rotational dynamics of the quadrotor are assumed to be unknown and are

modelled by GP techniques. A hierarchical scheme based on the GPMPC2 algorithm is

used to control the quadrotor. The translational and rotational subsystems are given in

Section 6.1. The proposed GPMPC2 based hierarchical control scheme is presented in

Section 6.2. Section 6.3 reports the simulation results.

6.1 Quadrotor Dynamical Equations

A quadrotor helicopter (quadrotor for short) basically has four rotors in a cross config-

uration structure. Four propellers are connected to the corresponding motors through

reduction gears, and the rotation axe of each propeller is fixed and parallel to others.

When the quadrotor works, four rotors are divided into two groups. The first group

consists of front and gear rotors (rotor 2 and 4 respectively as shown in Figure 6.1) that

rotate counter-clockwise. The remaining right and left rotors (rotor 1 and 3 respectively

as shown in Figure 6.1) that rotate clockwise belongs to the second group.

Four independent thrusts, F1, F2, F3 and F4 as shown in Figure 6.1 are generated by

corresponding rotors. Working together, they control movements with six coupled Degree-

of-Freedom (DOF) – three translational x, y, z and three rotational φ, θ, ψ. The speed

differences between rotors in the same group will produce corresponding torques to drive

roll or pitch movements, as shown in Figure 6.2.b and Figure 6.2.c respectively, Further,

the speed difference between these two torques will produce the yaw torque, as shown

89

Chapter 6. Quadrotor Control using GPMPC

ω3 ω2

ω4 ω1

F1

F2F3

F4

y′

x′

z′

B-Frame

θ

φ

ψ

o

E-Frame

x

y

z

Figure 6.1: Quadrotor Body-Inertial Frame

in Figure 6.2.d. In addition, Figure 6.2.a shows same speed over four rotors will keep

the quadrotor hovering. Otherwise, increasing (or decreasing) the same amount of speed

over all rotors will allow the quadrotor reach a certain height.

In this section, the quadrotor is basically considered as a 6 DOF rigid body where

the entire quadrotor is represented as a mass with inertia and autogyroscopics driven by

gravity and controlled torques and forces. In addition, two reference frames are defined

as shown in Figure 6.1, including earth inertial reference frame (E-frame for short) and

Body-fixed reference frame(B-frame for short).

The dynamical equations of a quadrotor can be obtained by using the Newton-Euler

formalism based on forces/torques analysis of a rigid body, or energy-based Lagrange-

Euler formalism. Assuming ξE[m] = [x, y, z]T and ηE[rad] = [φ, θ, ψ]T are the position

and attitude vectors of the quadrotor in the E-frame, where φ, θ and ψ are rotation

angles around x, y and z-axis, respectively. The generalized coordinate vector can be

subsequently defined by,

q =

[
ξE

ηE

]
(6.1)

The linear and angular velocities of the quadrotor also are defined in the B-frame by

V B[m · s−1] = [u, v, w]T and ΩB[rad · s−1] = [p, q, r].

In this section, the dynamical models of the quadrotor are constructed based on the

Euler-Lagrange formalism from the energy perspective. In particular, the Lagrangian of

90

Chapter 6. Quadrotor Control using GPMPC

�REAR
ΩH ±ΔΩ � LEFT

ΩH ±ΔΩ

�RIGHT
ΩH ±ΔΩ � FRONT

ΩH ±ΔΩ

6.2.a: Hovering or Taking up/down

�REAR
ΩR

� LEFT
ΩR ±ΔΩ1

�RIGHT
ΩR ∓ΔΩ2

� FRONT
ΩR

6.2.b: Roll

�REAR
ΩP ±ΔΩ � LEFT

ΩP ±ΔΩ1

�RIGHT
ΩP

� FRONT
ΩP ∓ΔΩ2

6.2.c: Pitch

�REAR
ΩY ±ΔΩ1

� LEFT
ΩY ∓ΔΩ2

�RIGHT
ΩY ∓ΔΩ2

� FRONT
ΩY ±ΔΩ1

6.2.d: Yaw

Figure 6.2: Schematic diagram of quadrotor movements. Where Ω denotes the speed of
propellers, and ΔΩ represents the increment on Ω.

the quadrotor is typically defined by,

L(q, q̇) = ET + ER − EP (6.2)

where ET and ER denote the translational and rotational kinetic energies, and EP is the

total potential energy. The Euler-Lagrange equation is subsequently obtained [2, 140] as,[
F
Γ

]
=

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

(6.3)

where F is the translational force applied to the quadrotor, and Γ = [τφ, τθ, τψ]
T repre-

sents the moments in the roll, pitch and yaw directions.

As discussed in [2], (6.3) can be further separated into a translational motion equation

given by,

F = mξ̈E +mgez (6.4)

and a rotational motion equation given by,

Γ = J η̈E + Cη̇E (6.5)

where m is the mass of the quadrotor and g is gravitational acceleration, ez = [0, 0, 1]T

is a unit vector in the E-frame. In addition, J and C are the Jacobian and Coriolis

matrices (see [2] for an elaboration of the two matrices).

91

Chapter 6. Quadrotor Control using GPMPC

The translational motion equation (6.4) can be further expressed by means of state

vector ξE, ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẍ =
1

m
uxU1 +

Ax
m

ÿ =
1

m
uyU1 +

Ax
m

z̈ = −g + 1

m
(cosφ cos θ) +

Az
m

(6.6)

with intermediate controls

ux = cosφ sin θ cosψ + sinφ sinψ

uy = cosφ sin θ sinψ − sinφ cosψ
(6.7)

where Ax, Ay and Az are aerodynamic forces that are independently applied to x, y and

z axis in the E-frame.

Assuming the state vector xξ = [x, ẋ, y, ẏ, z, ż]T and control input vector uξ =

[U1, ux, uy]
T , the corresponding translational subsystem based on the (6.6) can be ob-

tained in the state-space form,

ẋξ = f
(
xξ,uξ

)
+ εξ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ux
U1

m
+
Ax
m

ẏ

uy
U1

m
+
Ay
m

ż

−g + (cosφ cos θ)
U1

m
+
Az
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ εξ,

(6.8)

where εξ denotes the external disturbances in the translational subsystem.

Similarly, we can rewrite the (6.5) by means of ηE,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ̈ = θ̇ψ̇

(
Iyy − Izz
Ixx

)
+
JR
Ixx

θ̇ΩR +
L

Ixx
U2

θ̈ = φ̇ψ̇

(
Izz − Ixx
Iyy

)
− JR
Iyy

φ̇ΩR +
L

Iyy
U3

ψ̈ = θ̇φ̇

(
Ixx − Iyy
Izz

)
+

L

Izz
U4

(6.9)

where L is the arm length of the quadrotor, JR denotes the inertial moment of rotors,

and ΩR represents the overall residual angular speed of propellers. In addition, Ixx,Iyy

92

Chapter 6. Quadrotor Control using GPMPC

and Izz are the inertial moments w.r.t. the corresponding x, y and z axis.

The rotational subsystem can be obtained as well with the state vector xη = [φ, φ̇, θ, θ̇, ψ, ψ̇]T

and control input vector uη = [U2, U3, U4]
T ,

ẋη = g (xη,uη) + εη

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̇

θ̇ψ̇

(
Iyy − Izz
Ixx

)
+
JR
Ixx

θ̇ΩR +
L

Ixx
U2

θ̇

φ̇ψ̇

(
Izz − Ixx
Iyy

)
− JR
Iyy

φ̇ΩR +
L

Iyy
U3

ψ̇

θ̇φ̇

(
Ixx − Iyy
Izz

)
+

L

Izz
U4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ εη,

(6.10)

where εη is the external disturbances in the rotational subsystem.

6.2 Quadrotor Control using GPMPC

6.2.1 Overall Control Scheme

The trajectory tracking problem of the quadrotor involves tracking the desired positions of

the translational subsystem, as well as the desired attitudes of the rotational subsystem.

A hierarchical control structure used in [2, 141] is employed in this section to handle

these two tracking problems sequentially. The block diagram of this structure is shown

in Figure 6.3. In the outer loop, the translational subsystem is controlled to follow

the sequence of desired positions generated by the “Trajectory Generator”. The optimal

controls U1 are obtained by minimizing the tracking errors in the “Translation Controller”

that also produces desired attitudes θd and φd from intermediate controls ux and uy given

by (6.7). Then, the attitudes of the rotational subsystem are tuned to achieve the target

values in the inner loop where the desired ψd is always set to zero. By minimizing

the attitude errors again, the optimal controls U2, U3 and U4 can be obtained from

the “Rotation Controller”. Finally, the optimized control inputs U1, U2, U3 and U4 are

applied to the quadrotor.

93

Chapter 6. Quadrotor Control using GPMPC

Trajectory
Generator

Translation
Controller

Rotation
Controller

Rotation
Subsystem

Translation
Subsystem

Quadrotors⎡
⎣ xd
yd
zd

⎤
⎦

ψd = 0

φd, θd
U2

U3

U4

U1 (x, y, z)T

(φ, θ, ψ)T

Disturbance:εη Disturbance:εξ

Ax Ay Az

Figure 6.3: The Overall Control Scheme for Quadrotors

6.2.2 GP Learning of Quadrotor Dynamic Equations

The accurate translational and rotational equations are required when using the pro-

posed MPC based control approaches. In this section, they are assumed unknown and

are learnt by using the data-driven GP modelling technique, while the deterministic

models are required in [2, 141]. As shown in Section 6.1, they are basically nonlinear

time-varying systems and can be uniformly expressed by the general form in (4.1). Then

through using GP models with the consideration of the uncertainty propagation, the cor-

responding GP models for the translational and rotational subsystems can be obtained

in the same way presented in Section 4.1.1.

6.2.3 GPMPC2 for Quadrotor Trajectory Tracking Control

The discrete MPC trajectory tracking problem of the translational subsystem can be

defined by,

min
uξ(·)

H∑
i=1

{∥∥∥xξk+i − rξk+i

∥∥∥2

Q
+

∥∥∥uξk+i−1

∥∥∥2

R

}
(6.11a)

s.t. xξk+i+1 = f̂(xξk+i,u
ξ
k+i−1) + εξk+i (6.11b)

xξmin ≤ xξk+i ≤ xξmax (6.11c)

uξmin ≤ uξk+i−1 ≤ uξmax (6.11d)

where f̂(·) is the discretized function of f(·) in (6.8), xξk+i, u
ξ
k+i−1 and εξk+i are the

corresponding discretized states, control inputs and external noises. In addition, rξk+i
denotes the desired positions at sampling time k + i with the entries xd,k+i, yd,k+i and

zd,k+i.

94

Chapter 6. Quadrotor Control using GPMPC

Similarly, we can define the MPC trajectory tracking problem of the rotational sub-

system,

min
uη(·)

H∑
i=1

{∥∥xηk+i − rηk+i
∥∥2

Q′ +
∥∥uηk+i−1

∥∥2

R′

}
(6.12a)

s.t. xηk+i+1 = ĝ(xηk+i,u
η
k+i−1) + εηk+i (6.12b)

xηmin ≤ xηk+i ≤ xηmax (6.12c)

uηmin ≤ uηk+i−1 ≤ uηmax (6.12d)

where ĝ(·) is the discretized function of g(·) in (6.10), xηk+i, u
η
k+i−1 and εηk+i are the

corresponding discretized states, control inputs and external noises, rηk+i denotes the

desired attitudes at sampling time k + i with the entries φd,k+i, θd,k+i and ψd,k+i.

In [2, 141], the deterministic translational and rotational subsystem functions are

known. Therefore, the “Translation Controller” and “Rotation Controller” are directly

designed based on the deterministic nonlinear MPC technique. In this section, the MPC

problem (6.11) and (6.12) are stochastic due to the subsystems are learnt by GP models.

The stochastic problems can be uniformly expressed by the general MPC problem

(5.9) with the cost function (5.10). As given in Section 5.2, they are subsequently re-

formulated to the deterministic ones by specifying the confidence level in the chance

constraints. The resultant MPC problems can be effectively solved by using the pro-

posed GPMPC1 and GPMPC2 algorithms. In this section, the GPMPC2 algorithm is

used due to its superior efficiency shown in the Section 5.5.

6.3 Simulation Results

The performance of the GPMPC2 based hierarchical control approach to the trajectory

tracking problem of the quadrotor is evaluated by the computer simulations. The pa-

rameters used in translational and rotational dynamical equation (6.4) and (6.5) are the

same as those used in [141]. All simulations are independently repeated 50 times and the

average results are shown here.

The modelling performance of proposed algorithm is evaluated by computing the

consumed time and training MSE given as (5.52) in Section 5.5. The control performance

is demonstrated in terms of computed inputs and outputs, as well as the IAE value given

95

Chapter 6. Quadrotor Control using GPMPC

as (5.52) in Section 5.5.

The so called “Elliptical” and “Lorenz” trajectories (shown as red dotted line in

Figure 6.8.a and 6.8.b) are used in the presence of external Gaussian white noises with

zero mean and unit variance. The translation subsystem inputs are subjected to 0 ≤
U1(k) ≤ 100,−0.2 ≤ ux(k) ≤ 0.2,−0.2 ≤ uy(k) ≤ 0.2 for the “Elliptical” trajectory and

−45 ≤ u1(k) ≤ 0,−2 ≤ ux(k) ≤ 2,−2 ≤ uy(k) ≤ 2 for the “Lorenz” trajectory. For

the rotational subsystem, all observations are scaled to the range [0.1, 0.9] therefore the

inputs are scaled as well. This is necessary mainly due to the large numerical ranges in

the original data. For example, the unscaled angle φ lies in the range [−1.57, 1.57] while
input U4 lies in the range [−3.2, 6.2] × 10−8. The scaled data leads to much improved

training results.

To generate the observations, each trajectory tracking problem is first solved by using

the hierarchical scheme based on the NMPC strategy proposed in [126]. 189 observations

including inputs, states and outputs are consequently collected and are used to learn

the GP models for each trajectory tracking problem.

The MPC parameters used in the translational subsystem are given as: initial states

x0 = [0, 0, 0, 0, 0, 0]T and initial control inputs u0 = [0, 0, 0]T , weighting matrix R =

diag{[27000, 21000, 21000]} and Q = I6×6, sampling frequency fs = 1Hz. The same

parameters used in the rotational subsystem. In addition, it is required to specify the

horizon H. Theoretically, a long enough H is necessary to guarantee the stability of MPC

controllers. However, the complexity of MPC problem increases exponentially with the

horizon’s growth. Meanwhile, when using the GP models, variances are also propagated

over the horizon. Thus, it is usually proposed to chose the H to make a trade-off between

the control performance and computational complexity. In this section, it is defined that

H = 10 for both “GPMPC2” based controller.

6.3.1 Modelling Results

Table 6.1 describes the obtained MSE values of learning the unknown translational and

rotational subsystems by using GP models in the trajectory tracking problems. The

corresponding translational and rotational training errors over the 189 samples are given

in Figure 6.4 and 6.5 respectively. These results show the obtained translational and

rotational subsystems learnt by GP models produce very small MSE values and tracking

errors in the both trajectory tracking simulations.

96

Chapter 6. Quadrotor Control using GPMPC

0 20 40 60 80 100 120 140 160 180
−5

0

5
x 10−4

X
[m

]

Translational Subsystem −− Traning Errors
Traning Size = 189

0 20 40 60 80 100 120 140 160 180
−1

0

1
x 10−3

Y
[m

]

0 20 40 60 80 100 120 140 160 180
−2

0

2
x 10−3

Z[
m

]

sample time k

6.4.a: Translational Subsystem

0 20 40 60 80 100 120 140 160 180
−2

0

2
x 10−4

φ[
ra

d]

Rotational Subsystem −− Traning Errors
Traning Size = 189

0 20 40 60 80 100 120 140 160 180
−2

0

2
x 10−4

θ[
ra

d]

0 20 40 60 80 100 120 140 160 180

−0.5
0

0.5

x 10−10

ψ
[ra

d]

sample time k

6.4.b: Rotational Subsystem

Figure 6.4: Modelling results of using GP modelling technique in the “Elliptical” trajec-
tory tracking problem

Table 6.1: Modelling MSE values of the translational and rotational subsystems using
the GP models in the trajectory tracking problems

MSE Values
“Elliptical” “Lorenz”

Position X 1.5603× 10−9 2.004× 10−8

Position Y 1.2642× 10−9 4.8964× 10−8

Position Z 3.7724× 10−8 2.6668× 10−7

Attitude φ 3.2111× 10−10 3.5194× 10−9

Attitude θ 2.1667× 10−10 3.5194× 10−9

Attitude ψ 2.2526× 10−12 7.1917× 10−11

6.3.2 Control Results

The results of using the GPMPC2 based hierarchical control approach to the trajectory

tracking problems are given in Figure 6.6 and 6.7. The results of using the NMPC are

used here as a reference. The effectivenesses of the proposed control scheme are obvious

since the computed outputs of the both translational and rotational subsystems are closed

to the desired ones. In addition as shown in the Figure 6.6.b, 6.6.d, 6.7.b and 6.7.d, the

quadrotor is able to overall follow the desired trajectories with constrained control inputs

by using the proposed approach. The overall trajectory tracking results are depicted in

Figure 6.8.a and 6.8.b.

97

Chapter 6. Quadrotor Control using GPMPC

0 20 40 60 80 100 120 140 160 180
−1

0

1
x 10−3

X
[m

]

Translational Subsystem −− Traning Errors
Traning Size = 189

0 20 40 60 80 100 120 140 160 180
−1

0

1
x 10−3

Y
[m

]

0 20 40 60 80 100 120 140 160 180
−2

0

2
x 10−3

Z[
m

]

sample time k

6.5.a: Translational Subsystem

0 20 40 60 80 100 120 140 160 180
−1

0

1
x 10−3

φ[
ra

d]

Rotational Subsystem −− Traning Errors
Traning Size = 189

0 20 40 60 80 100 120 140 160 180
−1

0

1
x 10−3

θ[
ra

d]

0 20 40 60 80 100 120 140 160 180
−2

0

2
x 10−10

ψ
[ra

d]

sample time k

6.5.b: Rotational Subsystem

Figure 6.5: Modelling results of using GP modelling technique in the “Lorenz” trajectory
tracking problem

6.4 Conclusion

A hierarchical scheme based on the GPMPC2 algorithm is proposed in this chapter for

the trajectory tracking problem of the quadrotor. The overall control structure consists of

two separate MPC controllers for the translational and rotational subsystem respectively.

The GP models are used to learn the unknown translational and rotational subsystem of

the quadrotor due to the model uncertainties can be explicitly evaluated. The GPMPC2

algorithm is subsequently used to compute the optimized control inputs in the trajectory

tracking problems of translational and rotational subsystem respectively. Simulation

results on the quadrotor trajectory tracking problems demonstrate the effectiveness of

using the proposed hierarchical scheme based on the GPMPC2 algorithm.

98

Chapter 6. Quadrotor Control using GPMPC

0 20 40 60 80 100 120 140 160 180
−20

0

20

X
[m

]

Translational Subsystem Tracking

0 20 40 60 80 100 120 140 160 180
−20

0

20

Y
[m

]

0 20 40 60 80 100 120 140 160 180
−100

−50

0

50

Z[
m

]

sample time k

Reference
NMPC
GPMPC

6.6.a: Translational Controlled Outputs

0 20 40 60 80 100 120 140 160 180
0

50

100

U
1

Control Inputs in Translational Subsystem

0 20 40 60 80 100 120 140 160 180
−0.5

0

0.5

u x

0 20 40 60 80 100 120 140 160 180
−0.5

0

0.5

u y

sample time k

NMPC
GPMPC

6.6.b: Translational Control Inputs

0 20 40 60 80 100 120 140 160 180
−0.5

0

0.5

φ[
ra

d]

Rotational Subsystem Tracking

0 20 40 60 80 100 120 140 160 180
−0.5

0

0.5

θ[
ra

d]

0 20 40 60 80 100 120 140 160 180
−1

0

1
x 10−6

ψ
[ra

d]

sample time k

Reference
NMPC
GPMPC

6.6.c: Rotational Controlled Outputs

0 20 40 60 80 100 120 140 160 180
−0.02

0

0.02

U
2

Control Inputs in Rotational Subsystem

0 20 40 60 80 100 120 140 160 180
−0.02

0

0.02

U
3

0 20 40 60 80 100 120 140 160 180
−5

0

5
x 10−8

U
4

sample time k

NMPC
GPMPC

6.6.d: Rotational Control Inputs

Figure 6.6: Simulation results of tracking the “Elliptical” trajectory using the GPMPC2
based approach

99

Chapter 6. Quadrotor Control using GPMPC

0 20 40 60 80 100 120 140 160 180
−20

0

20

X
[m

]

Translational Subsystem Tracking

0 20 40 60 80 100 120 140 160 180
−20

0

20

Y
[m

]

0 20 40 60 80 100 120 140 160 180
0

20

40

60

Z[
m

]

sample time k

Reference
NMPC
GPMPC

6.7.a: Translational Controlled Outputs

0 20 40 60 80 100 120 140 160 180
−60

−40

−20

0

U
1

Control Inputs in Translational Subsystem

0 20 40 60 80 100 120 140 160 180
−4

−2

0

2

u x

0 20 40 60 80 100 120 140 160 180
−5

0

5

u y

sample time k

NMPC
GPMPC

6.7.b: Translational Control Inputs

0 20 40 60 80 100 120 140 160 180
−2

0

2

φ[
ra

d]

Rotational Subsystem Tracking

0 20 40 60 80 100 120 140 160 180
−2

0

2

θ[
ra

d]

0 20 40 60 80 100 120 140 160 180
−2

0

2
x 10−6

ψ
[ra

d]

sample time k

Reference
NMPC
GPMPC

6.7.c: Rotational Controlled Outputs

0 20 40 60 80 100 120 140 160 180
−0.05

0

0.05

U
2

Control Inputs in Rotational Subsystem

0 20 40 60 80 100 120 140 160 180
−0.05

0

0.05

U
3

0 20 40 60 80 100 120 140 160 180
−1

0

1
x 10−7

U
4

sample time k

NMPC
GPMPC

6.7.d: Rotational Control Inputs

Figure 6.7: Simulation results of tracking the “Lorenz” trajectory using the GPMPC2
based approach

100

Chapter 6. Quadrotor Control using GPMPC

−10
0

10

−10
−5

0
5

10

−50

−40

−30

−20

−10

0

x[m]

"Elliptical" Trajectory Tracking

y[m]

z[
m

]

Reference
GPMPC

6.8.a: “Elliptical”

−10
−5

0
5

10

−10
−5

0
5

10

0

10

20

30

40

x[m]

"Lorenz" Trajectory Tracking

y[m]

z[
m

]

Reference
GPMPC

6.8.b: “Lorenz”

Figure 6.8: “Elliptical” and “Lorenz” trajectory tracking results of using the GPMPC2
based approach

101

Chapter 6. Quadrotor Control using GPMPC

102

Chapter 7

Stability Guaranteed GPMPC

The MPC problem (5.9) based on the cost function (5.10) results in open-loop control

with no guaranteed stability. This is mainly because the prediction and control horizon

H is finite, and therefore the system behaviour after H is not taken into account in the

optimization process. Several approaches have been used to address the stability issue of

MPC [1, 142]. A simple and direct approach is to extend the finite horizon to an infinite

one [143, 144]. However this requires solving an infinite MPC optimization problem that

is computationally very demanding or even infeasible. Another commonly used approach

is to add a terminal cost to the cost function. Usually, an appropriate terminal constraint

set may be also need to be added in order to guarantee the feasibility of predicted system

states beyond the horizon.

In this chapter, the stability issue with GPMPC is addressed through the introduction

of terminal cost and terminal constraints. The GPMPC problem is reformulated and a

computationally efficient algorithm based on the extended GP local model is proposed

to solve it. Finally, the stability of the proposed GPMPC algorithm is proved.

103

Chapter 7. Stability Guaranteed GPMPC

7.1 Stability Guaranteed GPMPC Algorithm

7.1.1 Terminal Cost and Constraints

Assume that a terminal state feedback controller K(·) exists which satisfies the following
conditions:

ΩF ⊂ X (7.1a)

K(x) ∈ U, ∀x ∈ ΩF (7.1b)

Ax+BK(x) ∈ ΩF , ∀x ∈ ΩΨ (7.1c)

Ψ(x)−Ψ(Ax+BK(x)) ≥ ‖x‖2Q + ‖Ax+BK(x)‖2R (7.1d)

Here, X is the feasible domain of the states which is defined by the state constraints

in (5.9), U is the feasible domain of the control inputs which is defined by the control

constraints in (5.9), ΩΨ denotes the feasible domain of the terminal states,Ψ(·) : Rn → R

represents the terminal cost function, A andB are two Jacobian matrices of the linearised

model of the system.

In order to guarantee asymptotic stability of the MPC controller, terminal cost is

added to the original cost function (5.10) so that it becomes

J (xk,uk−1) =
H∑
i=1

{∥∥xk+i − rk+i
∥∥2

Q
+

∥∥uk+i−1

∥∥2

R

}
+ F (xk+H+1|k − rk+H+1) (7.2)

In, There are a number of methods for choosing this terminal cost and the corresponding

terminal constraints [1, 142]. The terminal cost is usually of an ellipsoid form:

F (xk+H+1|k − rk+H+1) =
∥∥xk+H+1|k − rk+H+1

∥∥2

P
(7.3a)

ΩF =
{
xk+H+1|k ∈ R

n,
∥∥xk+H+1|k − rk+H+1

∥∥2

P
≤ ε

}
(7.3b)

where ‖·‖2P denote a 2-norm with weighting matrix P, and ε ≥ 0 is the upper bound of the

terminal cost. The advantage of using (7.3) is that the MPC optimization problem is kept

computationally simple. In addition, the ΩΨ with a large enough volume of vol(ΩΨ) =

4/3π det(P/ε) is required to guaranteed the feasibility of the MPC problem [145]. This

is easy to implement by tuning the value of ε using a trial-and-error approach.

A simple proportional controller K(·) = Kx can be used as the terminal state feedback

controller, where K denotes the feedback gain matrix. K and P are usually obtained

104

Chapter 7. Stability Guaranteed GPMPC

by using the LMI [145] techniques. They can also be computed by solving an infinite

horizon unconstrained Linear-Quadratic Regulator (LQR) problem [136] with the same

weighting matrices Q and R as those used for (5.10). This results in

K = −(R+BTPB)−1BTPA (7.4a)

P = (A+BK)TP(A+BK) +KTRK+Q (7.4b)

This implies that MPC control will switch to the unconstrained LQR control beyond the

control horizon H.

7.1.2 Problem Formulation

With the unknown nonlinear system is represented by a GP model, a new stochastic MPC

problem can now be stated using the modified cost function (7.2) as follows.

V∗
k = min

u(·)
E
[J (xk,uk−1)

]
(7.5a)

s.t. p(xk+1|xk) ∼ N (μk+1,Σk+1) (7.5b)

umin ≤ uk+i−1 ≤ umax (7.5c)

p
{
xk+i|k ≥ xmin

}
= η (7.5d)

p
{
xk+i|k ≤ xmax

}
= η (7.5e)∥∥xk+H+1|k − rk+H+1

∥∥2

P
≤ ε (7.5f)

where the η denotes the confidence level. For η = 0.95, the chance constraints (7.5d) and

(7.5e) are equivalent to,

μk+i − 2Σk+i ≥ xmin (7.6a)

μk+i + 2Σk+i ≤ xmax (7.6b)

105

Chapter 7. Stability Guaranteed GPMPC

The expectation of cost function (7.2) is given by

E
[J (xk,uk−1)

]
= E

[H∑
i=1

{∥∥xk+i − rk+i
∥∥2

Q
+

∥∥uk+i−1

∥∥2

R
}+ ‖xk+H+1 − rk+H+1‖2P

]

=
H∑
i=1

E
[∥∥xk+i − rk+i

∥∥2

Q
+

∥∥uk+i−1

∥∥2

R

]
+ E

[
‖xk+H+1 − rk+H+1‖2P

]

=
H∑
i=1

{
E
[∥∥xk+i − rk+i

∥∥2

Q

]
+ E

[∥∥uk+i−1

∥∥2

R

]}
+ E

[
‖xk+H+1 − rk+H+1‖2P

]
(7.7)

where E
[
u2
k

]
= u2

k because the control inputs are assumed to be deterministic. (7.7) can

be further simplied to

E
[J (xk,uk−1)

]
=

H∑
i=1

{∥∥μk+i − rk+i
∥∥2

Q
+ trace(QΣk+i) +

∥∥uk+i−1

∥∥2

R

}
+ ‖μk+H+1 − rk+H+1‖2P + trace(PΣk+H+1)

(7.8)

This essentially relaxes the original stochastic optimization problem (7.5) to a determin-

istic one similar to the method used in Chapter 5.

7.1.3 Solution

Similar to GPMPC2 in Section 5.3, the extended GP local model can be used to relax

the above non-convex and nonlinear optimization problem to a convex one.

Using the state and control variables defined by (5.25)-(5.27), problem (7.5) can be

rewritten as

min
U

∥∥Zk+1 − r∗k+1

∥∥2

Q̃
+ ‖Uk+1‖2R̃︸ ︷︷ ︸

Stage Cost Φ0→H

+ ‖sk+H+1 − rk+H+1‖2P︸ ︷︷ ︸
Terminal Cost ΦH→∞

(7.9a)

s.t. IHnxmin ≤MzZk+1 ≤ IHnxmax (7.9b)

IHmumin ≤ Uk+1 ≤ IHmumax (7.9c)

‖sk+H+1 − rk+H+1‖2P ≤ ε (7.9d)

where the parameter matrices Q̃, R̃, IHm, IHn and Mz are exactly same to those in

106

Chapter 7. Stability Guaranteed GPMPC

1 Initialization
the feasible point ΔU0

k ∈ ΠΔU;
the working set W0 = A(ΔU0

k);

2 for j = 0, 1, 2, · · · do
3 Replacing the Φ and ψ in (5.42) with Φ̃ and ψ̃ in (7.16);

4 Compute the δj and λ∗
k by solving the resultant linear equations;

5 if δj = 0 then
6 λ∗k = min

i∈Wj
k∩I

λ∗
k,i,

7 p = argmin
i∈Wj

k∩I
λ∗
k,i

8 if λ∗k ≥ 0 and (7.15c) is satisfied then

9 ΔU∗
k = ΔUj

k;
10 Stop.

11 else

12 Wj+1
k = Wj

k \ p;
13 ΔUj+1

k = ΔUj
k;

14 end

15 else
16 Compute the step length κj by (5.46),

17 q = argmin
i∈B(ΔUj

k)

Δ̃U,i − G̃iΔU
j
k

G̃iδj

18 if κj < 1 then

19 ΔUj+1
k = ΔUj

k + κjδj;

20 A(ΔUj+1
k) = A(ΔUj

k) ∪ q;
21 else

22 ΔUj+1
k = ΔUj

k + δj;

23 A(ΔUj+1
k) = A(ΔUj

k);

24 end

25 end

26 end
Algorithm 8: Active set method for solving the Stability-Guaranteed GPMPC prob-
lem

(5.28). Based on (5.30) to (5.33), the “state cost” term Φ0→H becomes

Φ0→H =
1

2
‖ΔUk‖2Φ +ψTΔUk +C (7.10a)

s.t. ΔUmin ≤
[
Tu

TzB̃

]
ΔUk ≤ ΔUmax (7.10b)

107

Chapter 7. Stability Guaranteed GPMPC

where Φ, ψ, C, ΔUmax and ΔUmin are exactly the same as in (5.35). In addition, based

on the extended GP local model (5.5),

sk+H+1 = sk+H +Δsk+H+1

= Γ̃1Uk + Γ̃2

(7.11)

with the parameters matrices Γ̃1 and Γ̃2 given by

Γ̃1 = Γ2 + Γ3AB+BKΓ3 ∈ R
(n+n2)×Hm (7.12a)

Γ̃2 = sk + Γ1Δsk +A
H+1Δsk +BKA

HΔsk ∈ R
n+n2

(7.12b)

where A and B are Jacobian matrices given in (5.6) and (5.7), and

Γ1 =
H∑
i=1

Ai ∈ R
(n+n2)×(n+n2) (7.13a)

Γ2 =

[
H−1∑
i=0

AiB,
H−2∑
i=0

AiB, · · · ,AB,B
]
∈ R

(n+n2)×Hm (7.13b)

Γ3 =
[
AH−1, · · · ,A, I] ∈ R

(n+n2)×H(n+n2) (7.13c)

Similarly, the “terminal cost” term ΦH→∞ can be expressed as

ΦH→∞ = Γ̃ 2
1PU

2
k + 2PΓ̃1(Γ̃2 − rk+H+1)Uk +P(Γ̃2 − rk+H+1)

2 (7.14)

Therefore, problem (7.9) can be expressed in the following condensed form:

min
ΔU

1

2
‖ΔUk‖2Φ̃ + ψ̃TΔUk + C̃ (7.15a)

s.t. ΔUmin ≤
[
Tu

TzB̃

]
ΔUk ≤ ΔUmax (7.15b)∥∥∥Γ̃1TuΔUk + uk−1Γ̃1 + Γ̃2 − rk+H+1

∥∥∥2

P
≤ ε (7.15c)

where

Φ̃ = Φ+ Γ̃1P ∈ R
Hm×Hm (7.16a)

ψ̃ = ψ + 2PΓ̃1(Γ̃2 − rk+H+1) ∈ R
Hm (7.16b)

C̃ = C+P(Γ̃2 − rk+H+1)
2 (7.16c)

Since Q̃, R̃, T̃z and T̃u are positive definite, Φ is also positive definite. In addition,

108

Chapter 7. Stability Guaranteed GPMPC

the Jacobian matrix A and terminal weighting matrix P are fully ranked. Hence Φ̃ is

positive definite and the constrained QP problem (7.15) is strictly convex. The solution

will therefore be unique and satisfies the KKT conditions.

Solving this QP problem could be computationally demanding if both constraints

(7.15b) and (7.15c) are included in the optimization process. A more efficient way is to

solve problem (7.15) without the terminal constraint (7.15c) using the active-set method

described in Section 5.3. The validity of the optimal solution obtained can then be verified

by checking the terminal constraint condition. Algorithm 8 describes this approach to

solving (7.15).

7.1.4 Stability Analysis

The stability of the controller discussed above is guaranteed by the the following theorem.

Theorem 1. Assuming that the condition (7.1) holds, and the feasibility at the initial

state is guaranteed. The unknown nonlinear system (4.1) under the proposed GPMPC

controller from (7.15) is asymptotically stable.

Proof. The proof is based on the use of Lyapunov stability theory. The conditions (7.1a)

to (7.1c) guarantee the satisfaction of terminal state constraints on the states beyond

horizon H.

Let the cost function (7.2) with terminal cost (7.3) as a Lyapunov function given as

follows,

V∗(k) =E
[J (x∗

k,u
∗
k−1)

]
=

H∑
i=1

{∥∥μ∗
k+i − rk+i

∥∥2

Q
+

∥∥u∗
k+i−1

∥∥2

R
+ trace(QΣ∗

k+i)

}
+Ψ(μ∗

k,Σ
∗
k)

(7.17)

where the terminal cost at sampling time k is given by,

Ψ(μ∗
k,Σ

∗
k) =

∥∥μ∗
k+H+1 − rk+H+1

∥∥2

P
+ trace(PΣ∗

k+H+1) (7.18)

and the use of ∗ is a notation for the variables related to the corresponding optimal

solutions. The Lyapunov function at sampling time k + 1 can be subsequently obtained

109

Chapter 7. Stability Guaranteed GPMPC

by,

V(k + 1) =
H∑
i=2

{∥∥μ∗
k+i − rk+i

∥∥2

Q
+

∥∥u∗
k+i−1

∥∥2

R
+ trace(QΣ∗

k+i)}

+ ‖μk+H+1 − rk+H+1‖2Q + ‖uk+H‖2R + trace(QΣk+H+1) +Ψ(μk+1,Σk+1)

=
H∑
i=1

{∥∥μ∗
k+i − rk+i

∥∥2

Q
+

∥∥u∗
k+i−1

∥∥2

R
+ trace(QΣ∗

k+i)}+Ψ(μ∗
k,Σ

∗
k)︸ ︷︷ ︸

V∗(k)

+Ψ(μk+1,Σk+1)−Ψ(μ∗
k,Σ

∗
k)

+ ‖μk+H+1 − rk+H+1‖2Q + ‖uk+H‖2R + trace(QΣk+H+1)

− ∥∥μ∗
k+1 − rk+1

∥∥2

Q
− ∥∥u∗

k−1

∥∥2

R
− trace(QΣ∗

k+1)

(7.19)

Based on the condition (7.1d), it can be known that

Ψ(μk+1,Σk+1)−Ψ(μ∗
k,Σ

∗
k)

+ ‖μk+H+1 − rk+H+1‖2Q + ‖uk+H‖2R + trace(QΣk+H+1) ≤ 0
(7.20)

Thus, the equality (7.19) becomes an inequality given by,

V(k + 1) ≤ V∗(k)− ∥∥μ∗
k+1 − rk+1

∥∥2

Q
− ∥∥u∗

k−1

∥∥2

R
− trace(QΣ∗

k+1) (7.21)

Due to the nature of optimization, it can be known that V∗(k + 1) ≤ V(k + 1). Thus,

V∗(k + 1) ≤ V∗(k)− ∥∥μ∗
k+1 − rk+1

∥∥2

Q
− ∥∥u∗

k−1

∥∥2

R
− trace(QΣ∗

k+1) (7.22)

where
∥∥μ∗

k+1 − rk+1

∥∥2

Q
≥ 0,

∥∥u∗
k−1

∥∥2

R
≥ 0 and trace(QΣ∗

k+1) ≥ 0. Therefore, the Lya-

punov function is monotonically non-increasing. This implies that system states will

asymptotically converge to the initial state and the unknown nonlinear system under

proposed GPMPC controller is asymptotically stable.

7.2 Conclusions

A stability guaranteed GPMPC algorithm is proposed in this chapter. The commonly

used terminal cost and constraint are introduced into the MPC problem to stabilize the

open-loop GPMPC1 or GPMPC2 controllers. This leads to a nonlinear, non-convex MPC

optimization problem. We relaxed this problem to a convex one by using the extended GP

110

Chapter 7. Stability Guaranteed GPMPC

based local model. The resultant convex problem can be solved by using the active-set

method, but is computationally demanding if the terminal constraint is always considered

in the iterative optimization process. To address this issue, this optimization problem

is solved without the consideration of terminal cost. The terminal cost is subsequently

used to check the satisfaction of obtained solutions. In addition, based on the Lyapunov

stability theory, we proved that the proposed GPMPC is guaranteed to be stable.

111

Chapter 7. Stability Guaranteed GPMPC

112

Chapter 8

Conclusions and Future Works

8.1 Conclusions

The research into MPC control of unknown systems that are modelled by GP is reported

in this thesis. Its contributions include efficient GP modelling techniques, both uncon-

strained and constrained MPC methods, and the use of terminal cost and constraints to

guarantee GPMPC stability. They are summarized in more detail below.

Chapter 3 addressed a key issue in GP modelling which is the learning of the model

hyperparameters. An efficient hybrid PSO algorithm has been proposed. It makes use

of multi-start techniques to improve global search ability. Unlike other typical PSO

algorithms, gradients of the fitness function are computed and used to enhance local

search ability. Experimental results in modelling both linear and nonlinear time-varying

systems show that this hybrid algorithm is more able to avoid getting stuck in local optima

compared with existing algorithms. It also exhibits faster convergence and produces more

accurate models. In addition, the use of MSE of the outputs as the fitness function is

explored. Results showed that the quality of the models produced is essentially the same

as that obtained by using the traditional LL function as fitness function. The advantage

of using MSE is that the quality of the intermediate solutions is directly observable during

the optimization process. Thus a physically meaningful termination condition could more

easily be set through MSE values.

Chapter 4 is concerned with the unconstrained MPC problem. The dynamics of the

systems being controlled are assumed to be unknown and thus need to be learnt from

empirical data and modelled using GP. A GP based MPC algorithm is proposed. The

113

Chapter 8. Conclusions and Future Works

novelty of the proposed method is the inclusion of GP variances in the cost function.

This allows model uncertainties, which are reflected by the GP variances, to be directly

accounted for in the optimization process. The resulting MPC problem is stochastic.

By specifying a confidence level, it has been shown that the problem could be relaxed

to a corresponding deterministic problem. The resultant optimization problem can be

solved efficiently by the use of analytic gradients of the GP models w.r.t. the inputs

and outputs. The effectiveness of this method is demonstrated through some trajectory

tracking problems.

MPC of GP modelled systems with input and/or state constraints are tackled in

Chapter 5. One of the main issues with existing algorithms for this problem is that GP

variances are not included in the cost function. They are usually included as chance

(or probabilistic) instead. Furthermore, the solutions to the resultant constrained MPC

problem are computationally expensive. Two alternative formulations, called GPMPC1

and GPMPC2, are proposed. With GPMPC1, GP variances are treated as slack variables

of the constraints on the GP mean and are directly included in the objective function as

penalty terms. The resulting MPC optimization problem is nonlinear and non-convex.

With the derivation of a GP based local dynamical model, an effective solution is proposed

that makes use of the FP-SQP optimization. With GPMPC2, the original non-convex

problem is relaxed to a convex one by using a proposed extended GP based local dy-

namical model. The resultant convex problem is effectively solved by using the active-set

method. Simulation results showed that both GPMPC1 and GPMPC2 are equally good

for solving the trajectory tracking problem for an unknown nonlinear system. However,

GPMPC2 is superior in terms of computational efficiency.

The effectiveness of GPMPC2 is further tested in Chapter 6 by applying it to the

trajectory tracking problem of a quadrotor. The dynamic system is divided into two

subsystems, one for translational and the other for rotational motion. The trajectory

tracking problem therefore becomes a position tracking problem for the translational

subsystem and an attitude tracking problem for the rotational subsystem. Both subsys-

tems are assumed to be unknown and are represented by GP models which are learnt from

empirical data. The two tracking problems are solved sequentially using GPMPC2 in a

hierarchical scheme. Results showed that GPMPC2 is effective in tracking two different

non-trivial trajectories.

The main issue with GPMPC1 and GPMPC2 is that they are developed for open-

loop control. Thus there is no guarantee for their stability. In Chapter 7, a closed-loop

114

Chapter 8. Conclusions and Future Works

stability guaranteed GPMPC is proposed to address this issue. The original GPMPC is

reformulated with terminal cost and terminal constraints. The non-convex optimization

problem is relaxed to a convex one using the extended GP based local dynamical model

in a similar way to GPMPC2. The resultant convex problem can first be solved without

the terminal constraints. The solutions obtained are then check to see if they satisfy these

constraints. This provides an efficient way to solve this MPC problem. The obtained

GPMPC controller is mathematically proven to be asymptotically stable.

8.2 Future Works

The methods and results presented in this thesis help to advance GP based MPC, making

it more computationally attractive as a control method for complex unknown systems.

However, the GP models are learnt offline and are not online updated. As more data are

collected during the operation of the system, the system model and hence the GPMPC

control could be improved if real-time online updating is incorporated. Techniques to

reduce the computational time required by online GP model updating will need to be

developed.

Another important issue in the proposed approaches is that the performance could not

guaranteed in the control tasks that are not included in the training process. A GPMPC

trained for the “Elliptical” trajectory in Section 6.3, for instance, may not perform well

for a “Lorenz” trajectory. This requires better generalization of the GP model which is

embedded in deep latent features of the system. Some form of deep learning techniques

may be used to achieve this goal, such as deep Gaussian processes proposed in [146] and

recurrent Gaussian processes proposed in [147].

115

Chapter 8. Conclusions and Future Works

116

Appendix A

Mean and Variance at uncertain
inputs

Through using the law of iterated expectations, the predictive mean m(x̃∗
k) is obtained

as

m(x̃∗
k) = Ex̃∗

k

[
Ef

[
Δx∗

k

]]
=

∫ (
K(x̃∗

k, X̃)K
−1
σ y

)N (x̃k|μ̃k, Σ̃k)dx̃k

=
(
K−1
σ y

)T ∫
K(x̃∗

k, X̃)N (x̃k|μ̃k, Σ̃k)dx̃k

= ΩTwk

(A.1)

where Ω = K−1
σ y ∈ R

D×n, and wk = [w1
k, · · · , wDk]T ∈ R

D×1 with the entries computed

by

wdk =

∫
K(x̃∗

k, X̃d)N (x̃k|μ̃k, Σ̃k)dx̃k

= σ2
s

∣∣Σ̃kΛ
−1 + I

∣∣− 1
2 exp

(− 1

2
χT
d (Σ̃k +Λ)−1χd

) (A.2)

where d = 1, · · · , D, and χd = X̃d − μ̃k.

117

Chapter A. Mean and Variance at uncertain inputs

[
σ2(x̃∗

k)
]
ab
=Ex̃∗

k

[
Varf

[
Δx∗

k

]]
+ Ex̃∗

k

[
(Δx∗

k)
2
]
− Ex̃∗

k

[
Δx∗

k

]2
=

∫ (
K(x̃k, x̃k)−K(x̃k, X̃)K

−1
σ K(X̃, x̃k)

)
N (x̃k|μ̃k, Σ̃k)dx̃k

+

∫ (
K(x̃k, X̃)K

−1
σ y

)2

N (x̃k|μ̃k, Σ̃k)dx̃k

−
(
(K−1

σ y)
T

∫
K(x̃k, X̃)N (x̃k|μ̃k, Σ̃k)dx̃k

)2

=

∫ (
K(x̃k, x̃k)−K(x̃k, X̃)K

−1
σ K(X̃, x̃k)

)
N (x̃k|μ̃k, Σ̃k)dx̃k

+

∫
K(x̃k, X̃)ΩΩ

TK(X̃, x̃k)N (x̃k|μ̃k, Σ̃k)dx̃k −
(
ΩTwk

)2

=σ2
s − trace

(
K−1
σ

∫
K(x̃k, X̃)K(X̃, x̃k)N (x̃k|μ̃k, Σ̃k)dx̃k

)
+ σ2

n

+ΩT
(∫

K(x̃k, X̃)K(X̃, x̃k)N (x̃k|μ̃k, Σ̃k)dx̃k

)
Ω−

(
ΩTwk

)2

=σ2
s − trace

(
K−1
σ Ξk

)
+ σ2

n +Ω
TΞkΩ−

(
ΩTwk

)2

(A.3)

In addition, the predictive variance σ2(x̃∗
k) in (4.9) leads to a matrix with the entries

specified by (A.3) when a = b, where the Ξk =

∫
K(x̃k, X̃)K(X̃, x̃k)N (x̃k|μ̃k, Σ̃k)dx̃k

has the entries

Ξ ij
k =|MΛ|− 1

2K(x̃i, μ̃k)K(x̃j, μ̃k)exp
(1
2
MT

χP
TMχ

)
(A.4)

where MΛ = Σ̃k(Λ
−1
i +Λ−1

j) + I, Mχ = Λ−1
i χi +Λ−1

j χj and P = Λ−1
i +Λ−1

j + Σ̃−1.

When a �= b, the entries of σ2(x̃∗
k) is obtained by[

σ2(x̃∗
k)
]
ab
= Ex̃∗

k

[
Δx∗

k,aΔx
∗
k,b

]
− Ex̃∗

k

[
Δx∗

k,a

]
Ex̃∗

k

[
Δx∗

k,b

]
(A.5)

where Ex̃∗
k

[
Δx∗

k,a

]
= m(x̃∗

k,a) and Ex̃∗
k

[
Δx∗

k,b

]
= m(x̃∗

k,b) computed by (A.1). And,

Ex̃∗
k

[
Δx∗

k,aΔx
∗
k,b

]
= Ex̃∗

k

[
Ef

[
Δx∗

k,a

]
Ef

[
Δx∗

k,b

]]
=

∫
K(x̃k,a, X̃)Ωa,K(X̃, x̃k,b)ΩbN (x̃k|μ̃k, Σ̃k)dx̃k

= ΩT
a

(∫
K(x̃k,a, X̃)K(x̃k,b, X̃)N (x̃k|μ̃k, Σ̃k)dx̃k

)
Ωb

= ΩT
aΞkΩb

(A.6)

118

Appendix B

Cross-covariance between GP States
and Outputs

It is not easy to compute the cross-covariance Cov[xk,Δxk] between GP state and output.

However, it is known that the cross-covariance between state-control and output is defined

as

Cov
[
x̃k,Δxk

]
=

[Cov[xk,Δxk]

Cov[uk,Δxk]

]
∈ R

(m+n)×n (B.1)

Thus, Cov[xk,Δxk] can be obtained by partitioning a n×n sub-matrix from Cov
[
x̃k,Δxk

]
.

In particularly,
Cov

[
x̃k,Δxk

]
= Ex̃k

[
Δxkx̃k

]−m(x̃∗
k)Ef

[
x̃k

]
= Ex̃k

[
Δxkx̃k

]−ΩTwkμk

(B.2)

where for each state dimension a = 1, · · · , n, Ex̃k

[
Δxakx̃k

]
can be computed as

Ex̃k

[
Δxakxk

]
= Ex̃k

[
xkEf [Δx

a
k]
]

=

∫
x̃k

(D∑
d=1

Ωa,dK(x̃k, x̃
a
d)
)
N (x̃k|μ̃k, Σ̃k)dx̃k

=
D∑
d=1

Ωa,d

∫
x̃kK(x̃k, x̃

a
d)N (x̃k|μ̃k, Σ̃k)dx̃k

=
D∑
d=1

Ωa,dw
d
k,aΣ̃(Σ̃+Λa)

−1χd

(B.3)

119

Chapter B. Cross-covariance between GP States and Outputs

120

Appendix C

GP Derivatives

The
∂μk+1

∂μk

,
∂μk+1

∂Σk

,
∂Σk+1

∂μk

,
∂Σk+1

∂Σk

,
∂μk+1

∂uk
and

∂Σk+1

∂uk
can be obtained analytically by

using (4.7)-(4.10) and (A.1)-(A.5).

∂μk+1

∂μk

=
∂μk+1

∂μ̃k

∂μ̃k

∂μk

+
∂μk+1

∂Σ̃k

∂Σ̃k

∂μk

∂μk+1

∂Σk

=
∂μk+1

∂μ̃k

∂μ̃k

∂Σk

+
∂μk+1

∂Σ̃k

∂Σ̃k

∂Σk

∂Σk+1

∂μk

=
∂Σk+1

∂μ̃k

∂μ̃k

∂μk

+
∂Σk+1

∂Σ̃k

∂Σ̃k

∂μk

∂Σk+1

∂Σk

=
∂Σk+1

∂μ̃k

∂μ̃k

∂Σk

+
∂Σk+1

∂Σ̃k

∂Σ̃k

∂Σk

∂μk+1

∂uk
=
∂μk+1

∂μ̃k

∂μ̃k

∂uk
+
∂μk+1

∂Σ̃k

∂Σ̃k

∂uk
∂Σk+1

∂uk
=
∂Σk+1

∂μ̃k

∂μ̃k

∂uk
+
∂Σk+1

∂Σ̃k

∂Σ̃k

∂uk

(C.1)

121

Chapter C. GP Derivatives

For each state dimension a = 1, · · · , n, ∂μ
a
k+1

∂μ̃k

,
∂μa

k+1

∂Σ̃k

,
∂Σab

k+1

∂μ̃k

and
∂Σab

k+1

∂Σ̃k

are obtained

as

∂μa
k+1

∂μ̃k

=
D∑
d=1

Ωa,dw
d
k,aχ

T
d Σ̃(Σ̃+Λa)

−1

∂μa
k+1

∂Σ̃k

=
D∑
d=1

Ωa,dw
d
k,a

(
− 1

2
((Λ−1

a Σ̃k + I)
−1ΛT

a)
−1 − 1

2
χT
d (−1)(Λa + Σ̃k)

−2χd

)
∂Σab

k+1

∂μ̃k

=
∂σ2(x̃k)

∂μ̃k

+
∂Cov[xk,a,Δxk,b]

∂μ̃k

+
∂Cov[xk,b,Δxk,a]

∂μ̃k

∂Σab
k+1

∂Σ̃k

=
∂σ2(x̃k)

∂Σ̃k

+
∂Cov[xk,a,Δxk,b]

∂Σ̃k

+
∂Cov[xk,b,Δxk,a]

∂Σ̃k

(C.2)

where
∂σ2(x̃k)

∂μ̃k

=ΩT
a

(∂Ξk

∂μ̃ k

−wT
k,b

∂wk,a

∂μ̃k

−wT
k,a

∂wk,b

∂μ̃k

)
Ωb −K−1

σ

∂Ξ

∂μ̃ k

∂σ2(x̃k)

∂Σ̃k

=ΩT
a

(∂Ξk

∂Σ̃ k

−wT
k,b

∂wk,a

∂Σ̃k

−wT
k,a

∂wk,b

∂Σ̃k

)
Ωb −K−1

σ

∂Ξ

∂Σ̃ k

(C.3)

where the entries for
∂Ξk

∂μ̃
and

∂Ξk

∂Σ̃
are specified by

∂Ξab
k

∂μ̃
=Ξab

k

(Λb

Λa +Λb

x̃k,a +
Λa

Λa +Λb

x̃k,b − μ̃k

)T(1

Λ−1
a +Λ−1

b

+ Σ̃k

)−1

∂Ξab
k

∂Σ̃
=− 1

2
Ξab
k

(Λa +Λb

ΛaΛb

Σ̃k + I
)−1(Λa +Λb

ΛaΛb

)
−

(Λb

Λa +Λb

x̃k,a +
Λa

Λa +Λb

x̃k,b − μ̃k

)T
(1

Λ−1
a +Λ−1

b

+ Σ̃k

)−1(Λb

Λa +Λb

x̃k,a +
Λa

Λa +Λb

x̃k,b − μ̃k

)
(C.4)

Also,

∂Cov[xk,a,Δxk,b]

∂μ̃k

=
Σ̃k

Σ̃k +Λ

n+m∑
d=1

Ωd

(
χd
∂wk,d

∂μ̃k

+wT
k,d

)
∂Cov[xk,a,Δxk,b]

∂Σ̃k

=
Σ̃k +Λ+ I

(Σ̃k +Λ)2

n+m∑
d=1

Ωdw
T
k,d +

Σ̃k

Σ̃k +Λ

n+m∑
d=1

Ωdχd
∂wk,d

∂Σ̃k

(C.5)

In addition, the rests
∂μ̃k

∂μk

,
∂μ̃k

∂uk
,
∂μ̃k

∂Σk

,
∂Σ̃kk

∂μk

,
∂Σ̃kk

∂uk
and

∂Σ̃kk

∂Σk

are easily obtained based

on (4.7).

122

Appendix D

Cost Function using GP

We first rewrite the (4.14) as follow

E [J (xk,uk−1)] = E
[H∑
i=1

{∥∥xk+i − rk+i
∥∥2

Q
+

∥∥uk+i−1

∥∥2

R
}
]

=
H∑
i=1

{
E
[
(xk+i − rk+i)

TQ(xk+i − rk+i)
]

︸ ︷︷ ︸
probabilistic term

+uTk+i−1Ruk+i−1︸ ︷︷ ︸
determinisitc term

} (D.1)

Let Qab as the entries of Q thus Qab = [Q]ab and εab as the entries of Σk thus εab = [Σk]ab,

the “probabilistic term” can be further derived to

E
[
(xk+i − rk+i)

TQ(xk+i − rk+i)
]

= E
[N∑
a=1

N∑
b=1

Qab(xk+i,a − rk+i,a)(xk+i,b − rk+i,b)
]

=
N∑
a=1

N∑
b=1

QabE
[
(xk+i,a − rk+i,a)(xk+i,b − rk+i,b)

]

=
N∑
a=1

N∑
b=1

Qab

{
E
[
xk+i,a − rk+i,a

]
E
[
xk+i,b − rk+i,b

]
+ Cov

(
(xk+i,a − rk+i,a), (xk+i,b − rk+i,b)

)
︸ ︷︷ ︸

εab

}

=
N∑
a=1

N∑
b=1

Qab

{
(μk+i,a − rk+i,a)(μk+i,a − rk+i,a) + εab

}

(D.2)

123

Chapter D. Cost Function using GP

where

N∑
a=1

N∑
b=1

Qab(μk+i,a − rk+i,a)(μk+i,a − rk+i,a) = (μk+i − rk+i)
TQ(μk+i − rk+i) (D.3)

and
N∑
a=1

N∑
b=1

Qabεab = trace(QΣk+i) (D.4)

Therefore, (D.1) can be obtained by

E [J (xk,uk−1)] =
H∑
i=1

{
(μk+i − rk+i)

TQ(μk+i − rk+i) + u
T
k+i−1Ruk+i−1

+ trace(QΣk+i)

}

=
H∑
i=1

{∥∥μk+i − rk+i
∥∥2

Q
+

∥∥uk+i−1

∥∥2

R
+ trace

(
QΣk+i

)}
(D.5)

124

Appendix E

Karush-Kuhn-Tucker (KKT)
Conditions for Convex Optimization
Problem

Considering the following constrained optimization problem with n-dimensional variables,

m1-dimensional equality and m2-dimensional inequality constraints,

min
x∈Rn

f(x) = eTx+
1

2
xTHx (E.1a)

s.t.Ax = b (E.1b)

Cx ≥ d (E.1c)

where f(x) : Rn → R is the quadratic objective function, H ∈ R
n×n denotes a symmetric

positive definite Hessian matrix, e ∈ R
n is a constant vector. In addition, A ∈ R

m1×n

and b ∈ R
m1 represent constraint matrix and constant vector in the equality constraints

(E.1b), while C ∈ R
m2×n and d ∈ R

m2 are constraint matrix and constant vector in the

inequality constraints (E.1c).

Let x∗ = argmin
x∈Rn

f(x) be a local optimum of problem (E.1), then there exist a

unique set of constants μ = {μ1, · · · , μm1} and λ = {λ1, · · · , λm2} such that the fol-

lowing Karush-Kahn-Tucker (KKT) conditions are satisfied,

x∗THT + eT − μA− λC = μb+ λd (E.2a)

Ax∗ = b (E.2b)

Ax∗ = b (E.2c)

Cx∗ = d (E.2d)

125

Chapter E. Karush-Kuhn-Tucker (KKT) Conditions for Convex Optimization Problem

∀μi ≥ 0, i = 1, · · · ,m1 (E.2e)

In the constrained optimization problem, (E.2) are necessary conditions for a local opti-

mum.

126

Appendix F

List of Publications

• G. Cao, E. M.-K. Lai, and F. Alam, “Particle swarm optimization for convolved

Gaussian process models,” in International Joint Conference on Neural Networks

(IJCNN). IEEE, 6-11 July 2014, pp.1573-1578.

• G. Cao, E. M.-K. Lai, and F. Alam, “Gaussian process model predictive control of

unmanned quadrotors,” in International Conference on Control, Automation and

Robotics (ICCAR). IEEE, 28-30 April, 2016.

• G. Cao, E. M.-K. Lai, and F. Alam, “Gaussian process based model predictive

control for linear time varying systems,” in International Workshop on Advanced

Motion Control (AMC Workshop). IEEE, 22-24 April, 2016.

• G. Cao, E. M.-K. Lai, and F. Alam, “Gaussian process model predictive control

of unknown nonlinear systems,” IET Control Theory & Applications. Accepted for

publication, 2017.

• G. Cao, E. M.-K. Lai, and F. Alam, “Gaussian process model predictive control

of an unmanned quadrotor helicopter,” Journal of Intelligent and Robotic Systems.

Under review, 2016.

• G. Cao, E. M.-K. Lai, and F. Alam, “Enhanced particle swarm optimization algo-

rithms for multiple-input multiple-output system modelling using convolved Gaus-

sian process models,” International Journal of Intelligent Systems Technologies and

Applications. Under review, 2016.

127

Chapter F. List of Publications

128

References

[1] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained model

predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–

814, 2000.

[2] G. V. Raffo, M. G. Ortega, and F. R. Rubio, “An integral predictive/nonlinear

H∞ control structure for a quadrotor helicopter,” Automatica, vol. 46, no. 1, pp.

29–39, 2010.

[3] K. Alexis, G. Nikolakopoulos, and A. Tzes, “Switching model predictive attitude

control for a quadrotor helicopter subject to atmospheric disturbances,” Control

Engineering Practice, vol. 19, no. 10, pp. 1195–1207, 2011.

[4] C.-S. Chiu, “TS fuzzy maximum power point tracking control of solar power gen-

eration systems,” IEEE Transactions on Energy Conversion, vol. 25, no. 4, pp.

1123–1132, 2010.

[5] C. Quek, M. Pasquier, and B. Lim, “A novel self-organizing fuzzy rule-based system

for modelling traffic flow behaviour,” Expert Systems with applications, vol. 36,

no. 10, pp. 12 167–12 178, 2009.

[6] F. Han, G. Feng, Y. Wang, and F. Zhou, “Fuzzy modeling and control for a non-

linear quadrotor under network environment,” in IEEE 4th Annual International

Conference on Cyber Technology in Automation Control, and Intelligent Systems

(CYBER). IEEE, 2014, pp. 395–400.

[7] J. Dunfied, M. Tarbouchi, and G. Labonte, “Neural network based control of a four

rotor helicopter,” in IEEE Proceedings of International Conference on Industrial

Technology (ICIT), vol. 3. IEEE, 2004, pp. 1543–1548.

129

REFERENCES

[8] H. Voos, “Nonlinear and neural network-based control of a small four-rotor aerial

robot,” in 2007 IEEE/ASME international conference on Advanced intelligent

mechatronics. IEEE, 2007, pp. 1–6.

[9] C. Nicol, C. Macnab, and A. Ramirez-Serrano, “Robust neural network control of

a quadrotor helicopter,” in Proceedings of the Canadian Conference on Electrical

and Computer Engineering, 2008, pp. 1233–1237.

[10] A. Das, F. Lewis, and K. Subbarao, “Neural network based robust backstepping

control approach for quadrotors,” in Porceedings of the AIAA Guidance, Naviga-

tion, and Control Conference, 2008, pp. 1–17.

[11] T. Dierks and S. Jagannathan, “Output feedback control of a quadrotor UAV using

neural networks,” IEEE Transactions on Neural Networks, vol. 21, no. 1, pp. 50–66,

2010.

[12] D. A. Nix and A. S. Weigend, “Estimating the mean and variance of the target

probability distribution,” in IEEE Proceedings of International Joint Conference

on Neural Networks (IJCNN), vol. 1. IEEE, 1994, pp. 55–60.

[13] G. Paass, “Assessing and improving neural network predictions by the bootstrap al-

gorithm,” in Advances in Neural Information Processing Systems (NIPS). Morgan

Kaufmann Publishers, 1993, pp. 196–196.

[14] J. Franke and M. H. Neumann, “Bootstrapping neural networks,” Neural compu-

tation, vol. 12, no. 8, pp. 1929–1949, 2000.

[15] F. Aires, C. Prigent, and W. B. Rossow, “Neural network uncertainty assessment

using Bayesian statistics: A remote sensing application,” Neural Computation,

vol. 16, no. 11, pp. 2415–2458, 2004.

[16] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty

in neural network,” in Proceedings of The 32nd International Conference on Ma-

chine Learning (ICML), 2015, pp. 1613–1622.

[17] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. Cam-

bridge, MA, USA: MIT Press, 1 2006.

[18] P. Boyle and M. Frean, “Dependent gaussian processes,” in Advances in Neural

Information Processing Systems (NIPS). MIT Press, 2005, pp. 217–224.

130

REFERENCES

[19] M. Alvarez and N. D. Lawrence, “Sparse convolved Gaussian processes for multi-

output regression,” in Advances in Neural Information Processing Systems (NIPS),

2009, pp. 57–64.

[20] G. Cao, E. M.-K. Lai, and F. Alam, “Particle swarm optimization for convolved

Gaussian process models,” in International Joint Conference on Neural Networks

(IJCNN). IEEE, 6-11 July 2014, pp. 1573–1578.

[21] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard, “Gaussian process

model based predictive control,” in American Control Conference, vol. 3. IEEE,

2004, pp. 2214–2219.

[22] B. Likar and J. Kocijan, “Predictive control of a gas–liquid separation plant based

on a Gaussian process model,” Computers & Chemical Engineering, vol. 31, no. 3,

pp. 142–152, 2007.

[23] A. Grancharova, T. A. Johansen, and P. Tøndel, “Computational aspects of ap-

proximate explicit nonlinear model predictive control,” in Proceedings of the In-

ternational Workshop on Assessment and Future Directions of Nonlinear Model

Predictive Control. Springer, 2007, pp. 181–192.

[24] A. Mesbah, “Stochastic model predictive control: An overview and perspectives for

future research,” IEEE Control Systems Magazine, Accepted, 2016.

[25] E. D. Klenske, M. N. Zeilinger, B. Scholkopf, and P. Hennig, “Gaussian process-

based predictive control for periodic error correction,” IEEE Transactions on Con-

trol Systems Technology, 2015.

[26] Z. Yan and J. Wang, “Robust model predictive control of nonlinear systems with

unmodeled dynamics and bounded uncertainties based on neural networks,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 25, no. 3, pp. 457–469,

2014.

[27] A. Grancharova and T. A. Johansen, “Explicit approximate model predictive con-

trol of constrained nonlinear systems with quantized input,” in Proceedings of the

International Workshop on Assessment and Future Directions of Nonlinear Model

Predictive Contro. Springer, 2008, pp. 371–380.

131

REFERENCES

[28] F. Zhu, C. Xu, and G. Dui, “Particle swarm hybridize with Gaussian process regres-

sion for displacement prediction,” in IEEE Proceedings of International Conference

on Bio-Inspired Computing: Theories and Applications. IEEE, 2010, pp. 522–525.

[29] D. Petelin and J. Kocijan, “Control system with evolving Gaussian process models,”

in IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS). IEEE,

2011, pp. 178–184.

[30] P. Boyle, “Gaussian processes for regression and optimisation,” Ph.D. dissertation,

Victoria University of Wellington, 2007.

[31] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine Learning.

Springer, 2006, vol. 1.

[32] M. N. Gibbs, “Bayesian Gaussian processes for regression and classification,” Ph.D.

dissertation, University of Cambridge, 1997.

[33] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” Cognitive modeling, vol. 1, p. 213, 2002.

[34] A. E. Ruano, Intelligent Control Systems using Computational Intelligence Tech-

niques. IET, 2005, vol. 70.

[35] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis.

CRC press, 2003.

[36] R. A. Choudrey, “Variational methods for Bayesian independent component anal-

ysis,” Ph.D. dissertation, University of Oxford, 2002.

[37] C. E. Rasmussen and Z. Ghahramani, “Occam’s Razor,” in Advances in Neural

Information Processing Systems (NIPS). MIT, 2001, pp. 294–300.

[38] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series.

MIT press, 1949.

[39] M. Hitsuda, “Representation of Gaussian processes equivalent to Wiener process,”

Osaka Journal of Mathematics, vol. 5, no. 2, pp. 299–312, 1968.

[40] R. M. Neal, “Monte Carlo implementation of Gaussian process models for Bayesian

regression and classification,” Department of Computer Science, University of

Toronto Toronto, Ontario, Canada, Tech. Rep., 1997.

132

REFERENCES

[41] A. O’Hagan and J. Kingman, “Curve fitting and optimal design for prediction,”

Journal of the Royal Statistical Society. Series B (Methodological), pp. 1–42, 1978.

[42] R. M. Neal, “Bayesian learning for neural networks,” Ph.D. dissertation, University

of Toronto, 1995.

[43] C. K. Williams and C. E. Rasmussen, “Gaussian processes for regression,” in Ad-

vances in Neural Information Processing Systems (NIPS). MIT Press, 1996.

[44] C. E. Rasmussen, “Evaluation of Gaussian processes and other methods for non-

linear regression,” Ph.D. dissertation, University of Toronto, 1996.

[45] A. G. Wilson, D. A. Knowles, and Z. Ghahramani, “Gaussian process regression

networks,” in IEEE Proceedings of International Conference on Machine Learning,

2011.

[46] T. V. Nguyen and E. V. Bonilla, “Efficient variational inference for Gaussian pro-

cess regression networks,” in Proceedings of the Sixteenth International Conference

on Artificial Intelligence and Statistics, 2013, pp. 472–480.

[47] T. Chen, J. Morris, and E. Martin, “Gaussian process regression for multivari-

ate spectroscopic calibration,” Chemometrics and Intelligent Laboratory Systems,

vol. 87, no. 1, pp. 59–71, 2007.

[48] E. V. Bonilla, K. M. Chai, and C. Williams, “Multi-task Gaussian process predic-

tion,” in Advances in Neural Information Processing Systems (NIPS). MIT Press,

2007, pp. 153–160.

[49] M. A. Osborne, S. J. Roberts, A. Rogers, S. D. Ramchurn, and N. R. Jennings,

“Towards real-time information processing of sensor network data using computa-

tionally efficient multi-output Gaussian processes,” in IEEE Proceedings of Interna-

tional Conference on Information Processing in Sensor Networks. IEEE Computer

Society, 2008, pp. 109–120.

[50] P. Goovaerts, Geostatistics for Natural Resources Evaluation. Oxford university

press, 1997.

[51] P. Smaragdis, “Blind separation of convolved mixtures in the frequency domain,”

Neurocomputing, vol. 22, no. 1, pp. 21–34, 1998.

133

REFERENCES

[52] A. Liutkus, R. Badeau, and G. Richard, “Gaussian processes for underdetermined

source separation,” IEEE Transactions on Signal Processing, vol. 59, no. 7, pp.

3155–3167, 2011.

[53] M. Goulard and M. Voltz, “Linear coregionalization model: Tools for estimation

and choice of cross-variogram matrix,” Mathematical Geology, vol. 24, no. 3, pp.

269–286, 1992.

[54] J. M. Ver Hoef and R. P. Barry, “Constructing and fitting models for cokriging and

multivariable spatial prediction,” Journal of Statistical Planning and Inference,

vol. 69, no. 2, pp. 275–294, 1998.

[55] D. Higdon, “Space and space-time modeling using process convolutions,” in Quan-

titative methods for current environmental issues. Springer, 2002, pp. 37–56.

[56] S. Haykin, Communication Systems. Wiley Publishing, 2009.

[57] P. Hemakumara and S. Sukkarieh, “Non-parametric UAV system identification with

dependent Gaussian processes,” in IEEE Proceedings of International Conference

on Robotics and Automation (ICRA). IEEE, 2011, pp. 4435–4441.

[58] ——, “UAV parameter estimation with multi-output local and global Gaussian pro-

cess approximations,” in IEEE Proceedings of International Conference on Robotics

and Automation (ICRA). IEEE, 2013, pp. 5402–5408.

[59] M. A. Alvarez, “Convolved Gaussian process priors for multivariate regression with

applications to dynamical systems,” Ph.D. dissertation, University of Manchester,

2011.

[60] L. Paninski, “Log-concavity results on Gaussian process methods for supervised

and unsupervised learning,” in Advances in Neural Information Processing Systems

(NIPS), 2004, pp. 1025–1032.

[61] A. v. d. Vaart and H. v. Zanten, “Information rates of nonparametric Gaussian

process methods,” Journal of Machine Learning Research, vol. 12, no. Jun, pp.

2095–2119, 2011.

[62] Y. Wang and B. Chaib-Draa, “A KNN based kalman filter Gaussian process re-

gression,” in Proceedings of the Twenty-Third international joint conference on

Artificial Intelligence, (IJCAI). AAAI Press, 2013, pp. 1771–1777.

134

REFERENCES

[63] G. Gregorcic and G. Lightbody, “Gaussian processes for modelling of dynamic non-

linear systems,” in Proceedings of the Irish Signals and Systems Conference, 2002,

pp. 141–147.

[64] G. Gregorčič and G. Lightbody, “Gaussian process approach for modelling of non-

linear systems,” Engineering Applications of Artificial Intelligence, vol. 22, no. 4,

pp. 522–533, 2009.

[65] N. D. Lawrence, “Gaussian process latent variable models for visualisation of high

dimensional data,” in Advances in Neural Information Processing Systems (NIPS),

vol. 16, no. 3, 2004, pp. 329–336.

[66] J. Wang, A. Hertzmann, and D. M. Blei, “Gaussian process dynamical models,” in

Advances in Neural Information Processing Systems (NIPS), 2005, pp. 1441–1448.

[67] W. Ni, S. K. Tan, W. J. Ng, and S. D. Brown, “Moving-window GPR for nonlinear

dynamic system modeling with dual updating and dual preprocessing,” Industrial

& Engineering Chemistry Research, vol. 51, no. 18, pp. 6416–6428, 2012.

[68] R. Murray-Smith and A. Girard, “Gaussian process priors with ARMA noise mod-

els,” in Proceedings of the Irish Signals and Systems Conference, 2001, pp. 147–152.

[69] J. Kocijan, B. Likar, B. Banko, A. Girard, R. Murray-Smith, and C. E. Rasmussen,

“A case based comparison of identification with neural network and Gaussian pro-

cess models,” in IEEE Proceedings of IFAC International Conference on Intelligent

Control Systems and Signal Processing, 2003, pp. 137–142.

[70] J. Kocijan, A. Girard, B. Banko, and R. Murray-Smith, “Dynamic systems iden-

tification with Gaussian processes,” Mathematical and Computer Modelling of Dy-

namical Systems, vol. 11, no. 4, pp. 411–424, 2005.

[71] T. Hachino and S. Yamakawa, “Non-parametric identification of continuous-time

Hammerstein systems using Gaussian process model and particle swarm optimiza-

tion,” Artificial Life and Robotics, vol. 17, no. 1, pp. 35–40, 2012.

[72] C. Bailer-Jones, T. Sabin, D. MacKay, and P. Withers, “Prediction of deformed

and annealed microstructures using Bayesian neural networks and Gaussian pro-

cesses,” in Proceedings of the Australasia Pacific Forum on intelligent processing

and manufacturing of materials, vol. 2, 1997, pp. 913–919.

135

REFERENCES

[73] C. Bailer-Jones, H. Bhadeshia, and D. J. C. Mackay, “Gaussian process modelling

of austenite formation in steel,” Materials Science and Technology, vol. 15, no. 3,

pp. 287–294, 1999.

[74] K. Ažman and J. Kocijan, “Application of Gaussian processes for black-box mod-

elling of biosystems,” ISA Transactions, vol. 46, no. 4, pp. 443–457, 2007.

[75] M. S	loński, “Bayesian neural networks and Gaussian processes in identification

of concrete properties,” Computer Assisted Mechanics and Engineering Sciences,

vol. 18, no. 4, pp. 291–302, 2011.

[76] K. K. S. Neo, “Non-linear dynamics identification using Gaussian process prior

models within a Bayesian context,” Ph.D. dissertation, National University of Ire-

land Maynooth, 2008.

[77] R. Urtasun, D. J. Fleet, and P. Fua, “3D people tracking with Gaussian process

dynamical models,” in IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, vol. 1. IEEE, 2006, pp. 238–245.

[78] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dynamical models

for human motion,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 30, no. 2, pp. 283–298, 2008.

[79] T. Wu and J. Movellan, “Semi-parametric Gaussian process for robot system iden-

tification,” in IEEE/RSJ Proceedings of International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2012, pp. 725–731.

[80] R. Grbic, D. Slikovic, and P. Kadlec, “Adaptive soft sensor for online prediction

based on moving window Gaussian process regression,” in IEEE Proceedings of

International Conference on Machine Learning and Applications (ICMLA), vol. 2.

IEEE, 2012, pp. 428–433.

[81] A. Abusnina and D. Kudenko, “Adaptive soft sensor based on moving Gaussian

process window,” in IEEE Proceedings of International Conference on Industrial

Technology (ICIT). IEEE, 2013, pp. 1051–1056.

[82] J. Yu and S. J. Qin, “Multimode process monitoring with Bayesian inference-based

finite Gaussian mixture models,” American Institute of Chemical Engineers, vol. 54,

no. 7, pp. 1811–1829, 2008.

136

REFERENCES

[83] J. Yu, “A nonlinear kernel Gaussian mixture model based inferential monitoring

approach for fault detection and diagnosis of chemical processes,” Chemical Engi-

neering Science, vol. 68, no. 1, pp. 506–519, 2012.

[84] ——, “Online quality prediction of nonlinear and non-Gaussian chemical processes

with shifting dynamics using finite mixture model based Gaussian process regres-

sion approach,” Chemical Engineering Science, vol. 82, pp. 22–30, 2012.

[85] D. Nguyen-Tuong, J. Peters, M. Seeger, and B. Schölkopf, “Learning inverse dy-

namics: A comparison,” in Advances in Computational Intelligence and Learning:

Proceedings of the European Symposium on Artificial Neural Networks (ESANN).

Evere, Belgium: d-side publications, 2008, pp. 13–18.

[86] D. Nguyen-Tuong and J. Peters, “Learning robot dynamics for computed torque

control using local Gaussian processes regression,” in IEEE ECSIS Symposium on

Learning and Adaptive Behaviors for Robotic Systems. IEEE, 2008, pp. 59–64.

[87] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Computed torque control with non-

parametric regression models,” in American Control Conference. IEEE, 2008, pp.

212–217.

[88] ——, “Model learning with local Gaussian process regression,” Advanced Robotics,

vol. 23, no. 15, pp. 2015–2034, 2009.

[89] R. Murray-Smith and D. Sbarbaro, “Nonlinear adaptive control using non-

parametric Gaussian process prior models,” in IEEE International Federation of

Automatic Control (IFAC) World Congress on Automatic Control, 2002.

[90] R. Murray-Smith, D. Sbarbaro, C. E. Rasmussen, and A. Girard, “Adaptive, cau-

tious, predictive control with Gaussian process priors,” in IEEE International Fed-

eration of Automatic Control (IFAC) Symposium on System Identification. Else-

vier Science, 2003.

[91] A. Girard, C. E. Rasmussen, J. Q. Candela, and R. Murray-Smith, “Gaussian

process priors with uncertain input – Application to multiple-step ahead time series

forecasting,” in Advances in Neural Information Processing Systems (NIPS). MIT,

2003, pp. 545–552.

137

REFERENCES

[92] D. Sbarbaro and R. Murray-Smith, “An adaptive nonparametric controller for a

class of nonminimum phase non-linear system,” in IEEE International Federation

of Automatic Control (IFAC) World Congress. Citeseer, 2005, pp. 729–729.

[93] D. Petelin, A. Grancharova, and J. Kocijan, “Evolving Gaussian process models for

prediction of ozone concentration in the air,” Simulation Modelling Practice and

Theory, vol. 33, pp. 68–80, 2013.

[94] G. Chowdhary, M. Mühlegg, J. P. How, and F. Holzapfel, “Concurrent learning

adaptive model predictive control,” in Advances in Aerospace Guidance, Navigation

and Control. Springer, 2013, pp. 29–47.

[95] Z. Zhao, X. Xia, J. Wang, J. Gu, and Y. Jin, “Nonlinear dynamic matrix control

based on multiple operating models,” Journal of Process Control, vol. 13, no. 1,

pp. 41–56, 2003.

[96] H. Bouhenchir, M. Cabassud, and M.-V. Le Lann, “Predictive functional control

for the temperature control of a chemical batch reactor,” Computers & Chemical

Engineering, vol. 30, no. 6, pp. 1141–1154, 2006.

[97] P. H. Sørensen, M. Nørgaard, O. Ravn, and N. K. Poulsen, “Implementation of

neural network based non-linear predictive control,” Neurocomputing, vol. 28, no. 1,

pp. 37–51, 1999.

[98] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and B. Likar, “Predictive con-

trol with Gaussian process models,” in Proceedings of IEEE Region 8 EUROCON

2003:Computer As A Tool, vol. A. Ljubljana: IEEE, 2003, pp. 352–356.

[99] A. Grancharova, J. Kocijan, and T. A. Johansen, “Explicit stochastic nonlinear

predictive control based on Gaussian process models,” in European Control Con-

ference, 2007, pp. 2340–2347.

[100] A. Alessio and A. Bemporad, “A survey on explicit model predictive control,” in

Nonlinear model predictive control, ser. Lecture Notes in Control and Information

Sciences. Springer, 2009, vol. 384, pp. 345–369.

[101] F. Berkenkamp and A. P. Schoellig, “Learning-based robust control: Guaranteeing

stability while improving performance,” in IEEE/RSJ Proceedings of International

Conference on Intelligent Robots and Systems (IROS), 2014.

138

REFERENCES

[102] Y. Wang, C. Ocampo-Martinez, and V. Puig, “Robust model predictive control

based on gaussian processes: Application to drinking water networks,” in European

Control Conference. IEEE, 2015, pp. 3292–3297.

[103] Y. Wang, C. Ocampo-Martinez, V. Puig, and J. Quevedo, “Gaussian process based

demand forecasting for predictive control of drinking water networks,” in Proceed-

ings of the 9th International Conference on Critical Information Infrastructures

Security (CRITIS), 2014.

[104] M. A. Alvarez and N. D. Lawrence, “Computationally efficient convolved multiple

output Gaussian processes,” Journal of Machine Learning Research, vol. 12, no.

May, pp. 1459–1500, 2011.

[105] I. J. Myung, “Tutorial on maximum likelihood estimation,” Journal of mathemat-

ical Psychology, vol. 47, no. 1, pp. 90–100, 2003.

[106] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE Proceedings

of International Conference on Neural Networks, Perth, WA, Australia, 1995, pp.

1942–1948.

[107] R. An, P. Gong, H. Wang, X. Feng, P. Xiao, Q. Chen, Q. Zhang, C. Chen, and

P. Yan, “A modified PSO algorithm for remote sensing image template matching,”

Photogrammetric engineering and remote sensing, vol. 76, no. 4, pp. 379–389, 2010.

[108] M. M. Noel, “A new gradient based particle swarm optimization algorithm for

accurate computation of global minimum,” Applied Soft Computing, vol. 12, no. 1,

pp. 353–359, 2012.

[109] S. Gaffour, M. Mahfouf, and Y. Y. Yang, “‘Symbiotic’ data-driven modelling for the

accurate prediction of mechanical properties of alloy steels,” in IEEE Proceedings

of International Conference of Intelligent Systems. IEEE, 2010, pp. 31–36.

[110] M. Majji, “System identification: time varying and nonlinear methods,” Ph.D.

dissertation, Texas A&M University, 2009.

[111] Z. Hou and S. Jin, “Data-driven model-free adaptive control for a class of MIMO

nonlinear discrete-time systems,” IEEE Transactions on Neural Networks, vol. 22,

no. 12, pp. 2173–2188, 2011.

139

REFERENCES

[112] J. Zhang, S. S. Ge, and T. H. Lee, “Output feedback control of a class of dis-

crete MIMO nonlinear systems with triangular form inputs,” IEEE Transactions

on Neural Networks, vol. 16, no. 6, pp. 1491–1503, 2005.

[113] M. P. Deisenroth, “Efficient reinforcement learning using Gaussian processes,”

Ph.D. dissertation, Karlsruhe Institute of Technology, 2010.

[114] Y. Pan and E. Theodorou, “Probabilistic differential dynamic programming,” in

Advances in Neural Information Processing Systems (NIPS), 2014, pp. 1907–1915.

[115] J. Q. Candela, A. Girard, J. Larsen, and C. E. Rasmussen, “Propagation of uncer-

tainty in bayesian kernel models-application to multiple-step ahead forecasting,”

in IEEE Proceedings of International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), vol. 2. IEEE, 2003, pp. II–701.

[116] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of sparse approxi-

mate Gaussian process regression,” Journal of Machine Learning Research, vol. 6,

pp. 1939–1959, 2005.

[117] A. Grancharova, J. Kocijan, and T. A. Johansen, “Explicit stochastic predictive

control of combustion plants based on Gaussian process models,” Automatica,

vol. 44, no. 6, pp. 1621–1631, 2008.

[118] B. Kouvaritakis and M. Cannon, “Stochastic model predictive control,” Encyclo-

pedia of Systems and Control, pp. 1–9, 2014.

[119] Y. Yuan, “Step-sizes for the gradient method,” AMS IP Studies in Advanced Math-

ematics, vol. 42, no. 2, p. 785, 2008.

[120] C. Kirches, Fast numerical methods for mixed-integer nonlinear model-predictive

control. Springer, 2011.

[121] L. Imsland, P. Kittilsen, and T. S. Schei, “Model-based optimizing control and

estimation using Modelica model,” Modeling, Identification and Control, vol. 31,

no. 3, pp. 107–121, 2010.

[122] L. Wang, Model predictive control system design and implementation using

MATLAB R©. Springer Science & Business Media, 2009.

140

REFERENCES

[123] A. Jadbabai and J. Hauser, “On the stability of receding horizon control with a

general terminal cost,” IEEE Transactions on Automatic Control, vol. 50, no. 5,

pp. 674–678, 2005.

[124] K. Worthmann, “Estimates on the prediction horizon length in model predictive

control,” in Proceedings of the 19th International Symposium on Mathematical The-

ory of Networks and Systems (MTNS2012), 2012.

[125] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence prop-

erties of the Nelder-Mead simplex method in low dimensions,” SIAM Journal on

optimization, vol. 9, no. 1, pp. 112–147, 1998.

[126] L. Grüne and J. Pannek, Nonlinear model predictive control–Theory and Algo-

rithms. London, U.K: Springer-Verlag, 2011.

[127] F. Tröltzsch, “Regular Lagrange multipliers for control problems with mixed point-

wise control-state constraints,” SIAM Journal on Optimization, vol. 15, no. 2, pp.

616–634, 2005.

[128] M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient numerical methods for non-

linear MPC and moving horizon estimation,” in International Workshop on assess-

ment and future directions on Nonlinear Model Predictive Control. Pavia, Italy:

Springer, 2008, pp. 391–417.

[129] S. Lucidi, M. Sciandrone, and P. Tseng, “Objective-derivative-free methods for

constrained optimization,” Mathematical Programming, vol. 92, no. 1, pp. 37–59,

2002.

[130] G. Liuzzi, S. Lucidi, and M. Sciandrone, “Sequential penalty derivative-free meth-

ods for nonlinear constrained optimization,” SIAM Journal on Optimization,

vol. 20, no. 5, pp. 2614–2635, 2010.

[131] L. Yiqing, Y. Xigang, and L. Yongjian, “An improved PSO algorithm for solv-

ing non-convex NLP/MINLP problems with equality constraints,” Computers &

chemical engineering, vol. 31, no. 3, pp. 153–162, 2007.

[132] O. Yeniay, “Penalty function methods for constrained optimization with genetic

algorithms,” Mathematical and Computational Applications, vol. 10, no. 1, pp. 45–

56, 2005.

141

REFERENCES

[133] S. J. Wright and M. J. Tenny, “A feasible trust-region sequential quadratic pro-

gramming algorithm,” SIAM journal on optimization, vol. 14, no. 4, pp. 1074–1105,

2004.

[134] Y.-h. Peng and S. Yao, “A feasible trust-region algorithm for inequality constrained

optimization,” Applied mathematics and computation, vol. 173, no. 1, pp. 513–522,

2006.

[135] X. Zhang, J. Zhang, and L. Liao, “An adaptive trust region method and its con-

vergence,” Science in China Series A: Mathematics, vol. 45, no. 5, pp. 620–631,

2002.

[136] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear

quadratic regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20,

2002.

[137] Y. Wang and S. Boyd, “Fast model predictive control using online optimization,”

IEEE Transactions on Control Systems Technology, vol. 18, no. 2, pp. 267–278,

2010.

[138] R. Fletcher, Practical methods of optimization, 2nd ed. Wiley-Interscience Publi-

cation, 1987.

[139] Y. Pan and J. Wang, “Model predictive control of unknown nonlinear dynamical

systems based on recurrent neural networks,” IEEE Transactions on Industrial

Electronics, vol. 59, no. 8, pp. 3089–3101, 2012.

[140] S. Bouabdallah, A. Noth, and R. Siegwart, “PID vs LQ control techniques ap-

plied to an indoor micro quadrotor,” in IEEE/RSJ Proceedings of International

Conference on Intelligent Robots and Systems (IROS), vol. 3. IEEE, 2004, pp.

2451–2456.

[141] K. Alexis, G. Nikolakopoulos, and A. Tzes, “On trajectory tracking model predic-

tive control of an unmanned quadrotor helicopter subject to aerodynamic distur-

bances,” Asian Journal of Control, vol. 16, no. 1, pp. 209–224, 2014.

[142] D. Q. Mayne, “Model predictive control: Recent developments and future promise,”

Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

142

REFERENCES

[143] M. A. Rodrigues and D. Odloak, “An infinite horizon model predictive control

for stable and integrating processes,” Computers & Chemical Engineering, vol. 27,

no. 8, pp. 1113–1128, 2003.

[144] T. Erez, Y. Tassa, and E. Todorov, “Infinite-horizon model predictive control for

periodic tasks with contacts,” Robotics: Science and systems VII, p. 73, 2012.

[145] W.-H. Chen, D. J. Ballance, and J. O’Reilly, “Optimisation of attraction domains

of nonlinear MPC via LMI methods,” in American Control Conference, vol. 4.

IEEE, 2001, pp. 3067–3072.

[146] A. C. Damianou and N. D. Lawrence, “Deep Gaussian processes,” in Proceedings

of the 16th International Conference on Artificial Intelligence and Statistics (AIS-

TATS), 2013, pp. 207–215.

[147] C. L. C. Mattos, Z. Dai, A. Damianou, J. Forth, G. A. Barreto, and N. D. Lawrence,

“Recurrent Gaussian processes,” in International Conference on Learning Repre-

sentations (ICLR), 2016.

143

